Advertisement

An Integrative Clustering Approach Combining Particle Swarm Optimization and Formal Concept Analysis

  • Anna Hristoskova
  • Veselka Boeva
  • Elena Tsiporkova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7451)

Abstract

In this article we propose an integrative clustering approach for analysis of gene expression data across multiple experiments, based on Particle Swarm Optimization (PSO) and Formal Concept Analysis (FCA). In the proposed algorithm, the available microarray experiments are initially divided into groups of related datasets with respect to a predefined criterion. Subsequently, a hybrid clustering algorithm, based on PSO and k-means clustering, is applied to each group of experiments separately. This produces a list of different clustering solutions, one per each group. These clustering solutions are pooled together and further analyzed by employing FCA which allows to extract valuable insights from the data and generate a gene partition over the whole set of experiments. The performance of the proposed clustering algorithm is evaluated on time series expression data obtained from a study examining the global cell-cycle control of gene expression in fission yeast Schizosaccharomyces pombe. The obtained experimental results demonstrate that the proposed integrative algorithm allows to generate a unique and robust gene partition over several different microarray datasets.

Keywords

data clustering k-means particle swarm optimization formal concept analysis integration analysis gene expression data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alizadeh, A., et al.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)CrossRefGoogle Scholar
  2. 2.
    Besson, J., Robardet, C., Boulicaut, J.-F.: Constraint-Based Mining of Formal Concepts in Transactional Data. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 615–624. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Besson, J., Robardet, C., Boulicaut, J.-F., Rome, S.: Constraint-based concept mining and its application to microarray data analysis. Intell. Data Anal. 9(1), 59–82 (2005)Google Scholar
  4. 4.
    Boeva, V., Tsiporkova, E.: A Multi-purpose Time Series Data Standardization Method. In: Sgurev, V., et al. (eds.) Intelligent Systems: From Theory to Practice. SCI, vol. 299, pp. 445–460. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Boeva, V., Hristoskova, A., Tsiporkova, E.: Clustering of Multiple DNA Microarrays through Combination of Particle Swarm Intelligence and K-means. In: Proceedings of the 6th International Conference on Computational Intelligence and Bioinformatics, Pittsburgh, USA, pp. 32–38 (2011)Google Scholar
  6. 6.
    Brazma, A., Gilks, W.R., Tom, B.D.M.: Fusing microarray experiments with multivariate regression. Bioinformatics 21(2), ii137–ii143 (2005)Google Scholar
  7. 7.
    Choi, J.K., et al.: Combining multiple microarray studies and modeling interstudy variation. Bioinformatics 19, i84–i90 (2003)CrossRefGoogle Scholar
  8. 8.
    Choi, V., Huang, Y., Lam, V., Potter, D., Laubenbacher, R., Duca, K.: Using formal concept analysis for microarray data comparison. Journal of Bioinformatics and Computational Biology 6(1), 65–75 (2008)CrossRefGoogle Scholar
  9. 9.
    B. Ganter, G. Stumme, and R. Wille. Formal Concept Analysis: Foundations and Applications. Lecture Notes in AI, no. 3626, 2005, Springer-Verlag.Google Scholar
  10. 10.
    Golub, T., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)CrossRefGoogle Scholar
  11. 11.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. Journal of Intelligent Information Systems 17(2) (2001)Google Scholar
  12. 12.
    Handl, J., et al.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21, 3201–3212 (2005)CrossRefGoogle Scholar
  13. 13.
    Kaytoue-Uberall, M., Duplessis, S., Napoli, A.: Using Formal Concept Analysis for the Extraction of Groups of Co-expressed Genes. In: Le Thi, H.A., Bouvry, P., Pham Dinh, T. (eds.) MCO 2008. CCIS, vol. 14, pp. 439–449. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Service Center, Piscataway (1995)CrossRefGoogle Scholar
  15. 15.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceeding of Fifth Berkeley Symp. Math. Stat. Prob., vol. 1, pp. 281–297 (1967)Google Scholar
  16. 16.
    Maere, S., Heymans, K., Kuiper, M.: BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics 21, 3448–3449 (2005)CrossRefGoogle Scholar
  17. 17.
    Omran, M., Engelbrecht, A., Salman, A.: Particle swarm optimization method for image clustering. Pattern Recognition and Artificial Intelligence (2005)Google Scholar
  18. 18.
    Potter, D.P.: A combinatorial approach to scientific exploration of gene expression data: An integrative method using Formal Concept Analysis for the comparative analysis of microarray data. Thesis dissertation, Department of Mathematics, Virginia Tech. (2005)Google Scholar
  19. 19.
    Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational Applied Mathematics 20, 53–65 (1987)zbMATHCrossRefGoogle Scholar
  20. 20.
    Rustici, G., et al.: Periodic gene expression program of the fission yeast cell cycle. Nat. Genetics 36, 809–817 (2004)CrossRefGoogle Scholar
  21. 21.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of IEEE Int. Conf. on Evolutionary Computation, pp. 69–73 (1998)Google Scholar
  22. 22.
    Theodoridis, S., Koutroubas, K.: Pattern recognition. Academic Press (1999)Google Scholar
  23. 23.
    Tsiporkova, E., Boeva, V.: Two-pass imputation algorithm for missing value estimation in gene expression time series. Journal of Bioinformatics and Computational Biology 5(5), 1005–1022 (2007)CrossRefGoogle Scholar
  24. 24.
    Zhou, et al.: Functional annotation and network reconstruction through cross-platform integration of microarray data. Nature Biotechnology 23(2), 238–243 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anna Hristoskova
    • 1
  • Veselka Boeva
    • 2
  • Elena Tsiporkova
    • 3
  1. 1.Department of Information TechnologyGhent University - IBBTGhentBelgium
  2. 2.Department of Computer Systems and TechnologyTechnical University of Sofia-branch PlovdivPlovdivBulgaria
  3. 3.ICT & Software Engineering GroupSirrisBrusselsBelgium

Personalised recommendations