Advertisement

Using Generic Meta-Data-Models for Clustering Medical Data

  • Dominic Girardi
  • Michael Giretzlehner
  • Josef Küng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7451)

Abstract

We present a generic, meta-model based data storage system for research, clinical studies or disease registers, which is enabled to store data of almost arbitrary structure. The system is highly costumizeable and allows the user to set up a professional web-based data acquisition system including administration area, data input forms, overview tables and statistics within hours. Furthermore, we evaluated a number of clustering algorithms regarding their ability to cluster the stored datasets for similarity search and further statistical analysis.

Keywords

Cluster Algorithm Hospital Information System Medical Case Consensus Cluster Data Storage System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leiner, F., Gaus, W., Haux, R., Knaup-Gregori, P.: Medical Data Management - A Practical Guide. Springer (2003)Google Scholar
  2. 2.
    Chen, P.P.S.: The entity relationship model - toward a unified view of data. ACM Transactions on Database Systems 1(1), 9–36 (1976)CrossRefGoogle Scholar
  3. 3.
    Meta object facility (mof) specification, OMG-Document ad/97-08-14 (September 1997)Google Scholar
  4. 4.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31 (1999)Google Scholar
  5. 5.
    Elhawary, M., Nguyen, N., Smith, C., Caruana, R.: Meta clustering. In: Sixth IEEE International Conference on Data Mining, vol. 1, pp. 107–118 (2006)Google Scholar
  6. 6.
    Monti, S., Tamayl, P., Mesirov, J., Golub, T.: Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 52, 91–118 (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kohonen, T.: The self-organizing map. Neurocomputing 21, 1–6 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Cover, T.M.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13, 21–27 (1967)zbMATHCrossRefGoogle Scholar
  9. 9.
    Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18, 401–409 (1969)CrossRefGoogle Scholar
  10. 10.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 178–188 (1936)Google Scholar
  11. 11.
    Bradley, P.S., Fayyad, U.M.: Refining initial points for k-means clustering. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 91–99 (1998)Google Scholar
  12. 12.
    Goder, A., Filkov, V.: Consensus clustering algorithms: Comparison and refinement. In: Proceedings of the Workshop on Algorithm Engineering and Experiments, pp. 109–117 (2008)Google Scholar
  13. 13.
    Alahakoon, D., Halgamuge, S., Srinivasan, B.: Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Transactions on Neural Networks 11(3), 601–614 (2000)CrossRefGoogle Scholar
  14. 14.
    Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: A self-organizing map for adaptive processing of structured data. IEEE Transactions on Neural Networks 14(3), 491–505 (2003)CrossRefGoogle Scholar
  15. 15.
    Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: A general framework for unsupervised processing of structured data (2004)Google Scholar
  16. 16.
    Hagenbuchner, M., Tsoi, A.C.: A supervised training algorithm for self-organizing maps for structures. Pattern Recognition Letters 26(12), 1874–1884 (2005)CrossRefGoogle Scholar
  17. 17.
    Hagenbuchner, M., Sperduti, A., Tsoi, A.C., Trentini, F., Scarselli, F., Gori, M.: Clustering XML Documents Using Self-organizing Maps for Structures. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 481–496. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Martín-Merino, M., Muñoz, A.: Extending the SOM Algorithm to Non-Euclidean Distances via the Kernel Trick. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 150–157. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Girardi, D., Dirnberger, J., Giretzlehner, M.: Meta-model based knowledge discovery. In: 2011 International Conference on Data and Knowledge Engineering (ICDKE), pp. 8–12 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dominic Girardi
    • 1
  • Michael Giretzlehner
    • 1
  • Josef Küng
    • 2
  1. 1.RISC Software GmbH - Research Unit Medical InformaticsHagenbergAustria
  2. 2.Institute for Application Oriented Knowledge ProcessingJKU LinzAustria

Personalised recommendations