Advertisement

Toward a Translational Medicine Approach for Hypertrophic Cardiomyopathy

  • Catia M. Machado
  • Francisco M. Couto
  • Alexandra R. Fernandes
  • Susana Santos
  • Ana T. Freitas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7451)

Abstract

Hypertrophic cardiomyopathy (HCM) is a complex genetic disease characterized by a variable clinical presentation and onset, as well as a high number of associated mutations.

Therefore, this disease is a good candidate for a translational medicine approach to assist in its prognosis. For this purpose, we propose a framework containing two components: one for data integration, and another for data analysis based on clinical-genetic associations obtained with data mining techniques.

In this article we present the implementation of the first component. At its basis is a semantic data model developed in OWL representing the clinical and genetic data necessary for the characterization of HCM patients. This model follows a modular approach and includes mappings to controlled vocabularies such as the NCI Thesaurus and SNOMED-Clinical Terms.

The development of the model has been done in collaboration with biomedical experts, who are also the providers of the data to populate it.

Keywords

translational medicine data integration data mining hypertrophic cardiomyopathy clinical decision support systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maron, B.J., Maron, M.S., Wigle, E.D., Braunwald, E.: The 50-Year History, Controversy, and Clinical Implications of Left Ventricular Outflow Tract Obstruction in Hypertrophic Cardiomyopathy: from Idiopathic Hypertrophic Subaortic Stenosis to Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 54, 191–200 (2009)CrossRefGoogle Scholar
  2. 2.
    Alcalai, R., Seidman, J.G., Seidman, C.E.: Genetic Basis of Hypertrophic Cardiomyopathy: from Bench to the Clinics. J. Cardiovasc. Electrophysiol. 19, 104–110 (2008)Google Scholar
  3. 3.
    Harvard Sarcomere Mutation Database, http://genepath.med.harvard.edu/~seidman/cg3/
  4. 4.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 25, 25–29 (2000)CrossRefGoogle Scholar
  5. 5.
    Systematized Nomenclature of Medicine-Clinical Terms (SNOMED), http://www.ihtsdo.org/snomed-ct/
  6. 6.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am., 29–37 (2001)Google Scholar
  7. 7.
    World Wide Web Consortium, http://www.w3.org/
  8. 8.
  9. 9.
    OWL Web Ontology Language Current Status, http://www.w3.org/standards/techs/owl#w3call
  10. 10.
    Gudivada, R.C., Qu, X.A., Chen, J., Jegga, A.G., Neumann, E.K., Aronow, B.J.: Identifying Disease-Causal Genes Using Semantic Web-based Representation of Integrated Genomic and Phenomic Knowledge. J. Biomed. Inform. 41, 717–729 (2008)CrossRefGoogle Scholar
  11. 11.
    Agorastos, T., Koutkias, V., Falelakis, M., Lekka, I., Mikos, T., Delopoulos, A., Mitkas, P.A., Tantsis, A., Weyers, S., Coorevits, P., Kaufmann, A.M., Kurzeja, R., Maglaveras, N.: Semantic Integration of Cervical Cancer Data Repositories to Facilitate Multicenter Association Studies: the ASSIST Approach. Cancer Inform. 8, 31–44 (2009)Google Scholar
  12. 12.
    Colombo, G., Merico, D., Boncoraglio, G., Paoli, F.D., Ellul, J., Frisoni, G., Nagy, Z., van der Lugt, A., Vassányi, I., Antoniotti, M.: An Ontological Modeling Approach to Cerebrovascular Disease Studies: the NEUROWEB Case. J. Biomed. Inform. 43, 469–484 (2010)CrossRefGoogle Scholar
  13. 13.
    Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First Ontology. Technical report number KSL-01-05, Knowledge Systems, AI Laboratory, Stanford University (2001)Google Scholar
  14. 14.
    Protégé Ontology Editor, http://protege.stanford.edu
  15. 15.
    Hermit OWL Reasoner, http://hermit-reasoner.com/
  16. 16.
    Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Rubin, D.L., Storey, M.-A., Chute, C.G., Musen, M.A.: BioPortal: Ontologies and Integrated Data Resources at the Click of a Mouse. Nucleic Acids Res. 37, W170–W173 (2009)CrossRefGoogle Scholar
  17. 17.
    Machado, C.M., Couto, F., Fernandes, A.R., Santos, S., Cardim, N., Freitas, A.T.: Semantic Characterization of Hypertrophic Cardiomyopathy Diseases. In: First Workshop on Knowledge Engineering, Discovery and Dissemination in Health, KEDDH 2010 (2010)Google Scholar
  18. 18.
    Sioutos, N., Coronado, S., Haber, M.W., Hartel, F.W., Shaiu, W.L., Wright, L.W.: NCI Thesaurus: a Semantic Model Integrating Cancer-Related Clinical and Molecular Information. J. Biomed. Inform. 40, 30–43 (2007)CrossRefGoogle Scholar
  19. 19.
    The Ontology of Clinical Research (OCRe), http://rctbank.ucsf.edu/home/ocre.html
  20. 20.
    Beisswanger, E., Lee, V., Kim, J., Rebholz-Schuhmann, D., Splendiani, A., Dameron, O., Schulz, S., Hahn, U.: Gene Regulation Ontology (GRO): Design Principles and Use Cases. St. Heal. T. 136, 9–14 (2008)Google Scholar
  21. 21.
    Eilbeck, K., Lewis, S.E., Mungall, C.J., Yandell, M., Stein, L., Durbin, R., Ashburner, M.: The Sequence Ontology: a Tool for the Unification of Genome Annotations. Genome Biol. 6, R44 (2005)CrossRefGoogle Scholar
  22. 22.
    Jonquet, C., Musen, M.A., Shah, N.H.: Building a Biomedical Ontology Recommender Web Service. J. Biomed. Semantics 1(suppl. 1), S1 (2010)CrossRefGoogle Scholar
  23. 23.
    Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eilbeck, K., Ireland, A., Mungall, C.J., Leontis, N., Rocca-Serra, P., Ruttenberg, A., Sansone, S.-A., Scheuermann, R.H., Shah, N., Whetzel, P.L., Lewis, S.: The OBO Foundry: Coordinated Evolution of Ontologies to Support Biomedical Data Integration. Nat. Biotech. 25, 1251–1255 (2007)CrossRefGoogle Scholar
  24. 24.
    Gersh, B.J., Maron, B.J., Bonow, R.O., Dearani, J.A., Fifer, M.A., Link, M.S., Naidu, S.S., Nishimura, R.A., Ommen, S.R., Rakowski, H., Seidman, C.E., Towbin, J.A., Udelson, J.E., Yancy, C.W.: ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124, e783–e831 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Catia M. Machado
    • 1
  • Francisco M. Couto
    • 1
  • Alexandra R. Fernandes
    • 2
    • 3
    • 4
  • Susana Santos
    • 2
    • 3
  • Ana T. Freitas
    • 5
  1. 1.LaSIGE, Departamento de InformáticaUniversidade de LisboaLisboaPortugal
  2. 2.Universidade Lusófona de Humanidades e TecnologiasLisboaPortugal
  3. 3.Centro de Química Estrutural, Instituto Superior TécnicoLisboaPortugal
  4. 4.Departamento de Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
  5. 5.Instituto de Engenharia de Sistemas e Computadores, Instituto Superior TécnicoLisboaPortugal

Personalised recommendations