FPGA Implementation of Decomposition Methods for Real-Time Image Fusion

  • Adrian Antoniewicz
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 184)


The paper presents an efficient FPGA implementation of decomposition methods intended for real-time fusion. FABEMD (Fast and Adaptive Bidimensional Empirical Mode Decomposition) and Laplacian pyramid methods were examined. The real-time image processing was achieved by means of special image buffers with parallel and immediate data access and by application of paralleled and pipelined calculation flow ensuring constant processing latency.


Image Fusion Decomposition Level Fusion Algorithm FPGA Implementation Laplacian Pyramid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altera, Cyclone III Device Handbook vol. 1,2 (2010),
  2. 2.
    Altera, NIOS II Processor Reference Handbook (2010),
  3. 3.
    Putz, B., Bartys, M., Antoniewicz, A., Klimaszewski, J., Kondej, M., Wielgus, M.: Real-Time Image Fusion Monitoring System: Problems and Solutions. In: Choraś, R.S. (ed.) Image Processing & Communications Challenges 4. AISC, vol. 184, pp. 147–156. Springer, Heidelberg (2012)Google Scholar
  4. 4.
    Sims, O., Irvine, J.: An FPGA implementation of pattern-selective pyramidal image fusion. In: Proceedings of FPL 2006, pp. 1–4 (2006)Google Scholar
  5. 5.
    Antoniewicz, A., Jamrozik, W., Kondej, M., Putz, B.: Sprzetowa realizacja fuzji obrazow metoda piramidy Laplace’a w systemach nadzoru i diagnostyki. Pomiary, Automatyka, Kontrola 07, 789–793 (2011)Google Scholar
  6. 6.
    Burt, P.J., Adelson, E.H.: The Laplacian Pyramid as a Compact Image Code. IEEE Transatctions on Communications 31, 532–540 (1983)CrossRefGoogle Scholar
  7. 7.
    Bhuiyan, S.M.A., Adhami, R.R., Khan, J.F.: A novel approach of fast and adaptive bidimensional empirical mode decomposition. In: ICEIT, pp. V3:358–V3:363 (2008)Google Scholar
  8. 8.
    Bhuiyan, S.M.A., Adhami, R.R., Khan, J.F.: Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation. EURASIP J. Adv. Signal Proc., ID728356, 1–18 (2008)Google Scholar
  9. 9.
    Wielgus, M., Antoniewicz, A., Bartys, M., Putz, B.: Fast and Adaptive Bidimensional Empirical Mode Decomposition for the Real-time Video Fusion. Submitted to Fusion 2012, Singapore (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Automatic Control and RoboticsWarsaw University of TechnologyWarsawPoland

Personalised recommendations