No-Reference Image Quality Assessment for Iris Biometrics

  • Valery Starovoitov
  • Agnieszka Kitlas Golińska
  • Anna Predko-Maliszewska
  • Maciej Goliński
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 184)

Summary

No-reference image quality assessment (NRIQA) methods estimate image quality degradations without any information about the “perfect-quality” reference image. In this paper, we propose an NRIQA algorithm based on the idea of comparison two blurred variants of the original image to be estimated.

Keywords

Iris Image Image Quality Assessment Motion Blur Gaussian Blur Image Quality Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, Z., Bovik, A.C.: Modern image quality assessment. Morgan and Claypool, San Rafael (2006)Google Scholar
  2. 2.
    Wang, Z., Sheikh, H.R., Bovik, A.C.: No-reference perceptual quality assessment of JPEG compressed images. In: Proc. IEEE Int. Conf. Image Process., Rochester, pp. 477–480 (2002)Google Scholar
  3. 3.
    Marziliano, et al.: Perceptual blur and ringing metrics: application to JPEG 2000. Signal Process. Image Commun. 19, 163–172 (2004)CrossRefGoogle Scholar
  4. 4.
    Sheikh, R.H., Bovik, A.C., Cormack, L.: No-reference quality assessment using natural scene statistics: JPEG 2000. IEEE Trans. Image Process. 14(11), 1918–1927 (2005)CrossRefGoogle Scholar
  5. 5.
    Daugman, J.: High confidence recognition of persons by their iris patterns. In: IEEE 35th International Carnahan Conf. on Security Technology, London, UK, pp. 254–263 (2001)Google Scholar
  6. 6.
    Wei, Z., Tan, T., Sun, Z.: Nonlinear Iris Deformation Correction Based on Gaussian Model. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 780–789. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Crete, F., Dolmiere, T., Ladret, P., Nicolas, M.: The blur effect: perception and estimation with a new no-reference perceptual blur metric. In: Proc. SPIE, San Jose, vol. 6492 (2007)Google Scholar
  8. 8.
    Wan, J., He, X., Shi, P.: An iris image quality assessment method based on laplacian of gaussian operator. In: IAPR Conf. on Machine Vision Appl., MVA 2007, Tokyo, Japan, pp. 248–251 (2007)Google Scholar
  9. 9.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. on Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valery Starovoitov
    • 1
  • Agnieszka Kitlas Golińska
    • 1
  • Anna Predko-Maliszewska
    • 1
  • Maciej Goliński
    • 1
  1. 1.Department of Medical Informatics, Institute of Computer ScienceUniversity of BiałystokBiałystokPoland

Personalised recommendations