Advertisement

Science Visions, Science Fiction and the Roots of Computational Intelligence

  • Rudolf Seising
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 445)

Abstract

In later science fiction movies, computers run countries or govern the whole mankind but in science fiction stories of the 1950s this scenario does not exist. It seems that it originated from the early Computer Science and it was Lotfi A. Zadeh who published in 1950 the first science vision of a “Thinking Machine”. He also predicted in 1950 that “Thinking machines” may be commonplace in anywhere from ten to twenty years hence and that they will play a major role in any armed conflict. Not many years later new SF stories told these kinds of stories of computers that govern the world by their decision — sometimes they annihilate the earth, sometimes they protect the planet. This paper gives a historical view on the idea of “machines that/who thinks” in science visions and in science fiction. Then, it shows this idea’s historical path from the research program of Artificial Intelligence to that of Computational Intelligence.

Keywords

Computational Intelligence Soft Computing Science Fiction Science Vision Logical Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asimov, I.: I, Robot. Gnome Press, New York (1950)Google Scholar
  2. 2.
    Asimov, I.: The Thinking Machine. In: Farrell, E.J., Gage, T.E., Pfordresher, J., Rodrigues, R.J. (eds.) Science Fact/Fiction, pp. 90–91. Scott, Forseman & Company, Glenview (1974)Google Scholar
  3. 3.
    Asimov, I., Warrick, P.S., Greenberg, M.H.: Machines That Think: The Best Science Fiction Stories About Robots and Computers. Holt, Rinehart, and Winston (1984)Google Scholar
  4. 4.
    Bagley, J.D.: The behavior of adaptive systems which employ genetic and correlation algorithms. PhD thesis, University of Michigan (1967)Google Scholar
  5. 5.
    Berkeley, E.C.: Giant Brains or Machines that think. John Wiley & Sons, Inc., New York (1949)zbMATHGoogle Scholar
  6. 6.
    Bezdek, J.C.: On the rrelationship between neural networks, pattern recognition and intelligence. International Journal of Approximate Reasoning 6, 85–107 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bezdek, J.C.: What is computational intelligence? In: [57], pp. 1–12Google Scholar
  8. 8.
    Bonissone, P.P.: Soft computing: The convergence of emerging reasoning technologies. Soft Computing 1(1), 6–18 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cercone, N., McCalla, G.: Ten years of computational intelligence. Computational Intelligence 10(4), I (1994)Google Scholar
  10. 10.
    Clute, J.: Science Fiction: The illustrated Encyclopedia, 1st American edn. Dorling Kindersley, New York (1995)Google Scholar
  11. 11.
    Duch, W.: Quo vadis computational intelligence? In: Sincak, P., Vascak, J., Hirota, K. (eds.) Machine Intelligence: Quo Vadis?. Advances in Fuzzy Systems – Applications and Theory, vol. 21, World Scientific, Singapore (2004)Google Scholar
  12. 12.
    Duch, W.: What is computational intelligence and where is it going? In: Duch, W., Mandziuk, J. (eds.) Challenges for Computational Intelligence. SCI, vol. 63, pp. 1–13. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Fogel, L.G.: On the organization of intellect. PhD thesis, University of California, Los Angeles, CA, USA (1964)Google Scholar
  14. 14.
    Haigh, T.: Technology’s other storytellers: Science fiction as history of technology. In: Ferro, D.L., Swedin, E.G. (eds.) Science Fiction and Computing: Essays on Interlinked Domains, kindle Edition, NC, USA and London, UK, pp. 13–37. McFarland & Company, Jefferson (2011) cited: draft on Thomas Haigh’s homepage, http://www.tomandmaria.com/tom/
  15. 15.
    Haufe, R.: Design of a tit-tat-toe machine. Electrical Engineering 68, 885 (1949)Google Scholar
  16. 16.
    Heims, S.J.: The Cybernetics Group. The MIT Press, Cambridge (1991)Google Scholar
  17. 17.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The University of Michigan Press (1975)Google Scholar
  18. 18.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the USA 79(8), 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lohr, S.: Arthur W. Burks, 92, Dies; Early Computer Theorist. The New York Times (2008), http://www.nytimes.com/2008/05/19/technology/19burks.html
  20. 20.
    Magdalena, L.: What is soft computing? revisiting possible answers. International Journal of Computational Intelligence Systems 3(2), 148–159 (2010)CrossRefGoogle Scholar
  21. 21.
    Maker, M.H.: Conference notes by Meg Houston Maker: McCarthy, J.: What was expected, what we did, and AI today [AI@50] filene auditorium (2006), http://www.megmaker.com/page/6/ for the conference see also www.dartmouth.edu/~ai50/homepage.html
  22. 22.
    Martin, C.D.: The myth of the awesome thinking machine. Communications of the ACM 36(4), 120–133 (1993)CrossRefGoogle Scholar
  23. 23.
    McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the Dartmouth summer research project on artificial intelligence (1955), http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
  24. 24.
    McCorduck, P.: Machines who Think. Freeman, San Francisco (1979)Google Scholar
  25. 25.
    McCorduck, P.: Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence, 2nd edn. A. K. Peters, Natick (2004)Google Scholar
  26. 26.
    McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Minsky, M., Papert, S.: Perceptrons. The MIT Press, Cambridge (1969)zbMATHGoogle Scholar
  28. 28.
    Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, New York (2009)zbMATHGoogle Scholar
  29. 29.
    Moor, J.: The Dartmouth college artificial intelligence conference: The next fifty years. AI Magazine 27(4), 87–91 (2006)Google Scholar
  30. 30.
    von Neumann, J.: The Computer and the Brain. Yale University Press, New Haven (1958)zbMATHGoogle Scholar
  31. 31.
    von Neumann, J.: First draft of a report on the edvac. IEEE Annals of the History of Computing 15(4), 27–75 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Newell, A., Simon, H.A.: The logic theory machine. IRE Transactions on Information Theory IT-2(3), 61–79 (1956)CrossRefGoogle Scholar
  33. 33.
    Poole, D., Mackworth, A., Goebel, R.: Computational Intelligence: A Logical Approach. Oxford University Press, New York (1998)zbMATHGoogle Scholar
  34. 34.
    Rechenberg, I.: Evolutionsstrategie. Friedrich Frommann, Stuttgart / Bad Cannstatt, Germany (1973)Google Scholar
  35. 35.
    Robinson, K.S.: Notes for an essay on cecelia holland. Foundation 40, 54–61 (1987)Google Scholar
  36. 36.
    Rojas, R., Hashagen, U. (eds.): The First Computers: History and Architectures. The MIT Press, Cambridge (2000)Google Scholar
  37. 37.
    Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65(6), 386–408 (1958)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Rumelhart, D.E., McClelland, J.L., the PDP research group: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 2 volumes. The MIT Press, Cambridge (1986)Google Scholar
  39. 39.
    McCulloch, W.S.: Why the mind is in the head. In: Jeffress, L.A. (ed.) Cerebral Mechanisms in Behavior: The Hixon Symposium, pp. 42–57. John Wiley & Sons, Inc., New York (1951)Google Scholar
  40. 40.
    Schwefel, H.P.: Evolutionsstrategie und numerische optimierung. Dissertation, Technische Universität Berlin (1975)Google Scholar
  41. 41.
    Seising, R.: Interview with L. A. Zadeh on July, 26, see [42] (2000) (unpublished)Google Scholar
  42. 42.
    Seising, R.: Interview with L. A. Zadeh on June 15, see [42] (2001) (unpublished)Google Scholar
  43. 43.
    Seising, R.: The Fuzzification of Systems: The Genesis of Fuzzy Set Theory and Its Initial Applications – Developments up to the 1970s. Springer, New York (2007)zbMATHGoogle Scholar
  44. 44.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423 and 623–656 (1948)Google Scholar
  45. 45.
    Shannon, C.E., McCarthy, J. (eds.): Automata studies. Princeton University Press, Princeton (1956)zbMATHGoogle Scholar
  46. 46.
    Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. In: Proceedings of the London Mathematical Society, 2, vol 42, pp. 230–265 (1936-1937); with corrections from Proceedings of the London Mathematical Society, series 2, vol. 43, pp. 544–546 (1937)Google Scholar
  47. 47.
    Turing, A.M.: Computing machinery and intelligence. Mind 49(236), 433–460 (1950)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. Hermann & Cie., The Technology Press, and John Wiley & Sons, Inc., Cambridge, MA and New York (1948)Google Scholar
  49. 49.
    Zadeh, L.A.: Thinking machines – a new field in electrical engineering. Columbia Engineering Quarterly, 12–13, 30–31 (1950)Google Scholar
  50. 50.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Zadeh, L.A.: Fuzzy languages and their relation to human and machine intelligence. In: Proc. of Intl. Conf. on Man and Computer, Bordeaux, France, pp. 130–165 (1972)Google Scholar
  52. 52.
    Zadeh, L.A.: Making computers think like people. IEEE Spectrum 8, 26–32 (1984)Google Scholar
  53. 53.
    Zadeh, L.A.: Foreword. Applied Soft Computing 1(1), 1–2 (2001)CrossRefGoogle Scholar
  54. 54.
    Zadeh, L.A.: A new direction in ai: Toward a computational theory of perceptions. AI-Magazine 22(1), 73–84 (2001b)Google Scholar
  55. 55.
    Zadeh, L.A.: My life and work – a retrospective view. Applied and Computational Mathematics 10(1), 4–9 (2011)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Zadeh, L.A., Desoer, C.A.: Linear System Theory: The State Space Approach. McGraw-Hill Book Company, New York (1963)zbMATHGoogle Scholar
  57. 57.
    Zimmermann, H.J.: Editorial. Fuzzy Sets and Systems 69(1), 1–2 (1995)CrossRefGoogle Scholar
  58. 58.
    Zurada, J.M., Marks, R.J., Robinson, C.J. (eds.): Computational Intelligence Imitating Life. IEEE Press, Los Alamitos (1994)Google Scholar
  59. 59.
    Zurada, J.M., Marks, R.J., Robinson, C.J.: Introduction. In: [57], pp v–xi (1994b)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Edificio de InvestigaciónEuropean Centre for Soft ComputingMieresSpain

Personalised recommendations