About Rudolf Kruse and His Research Group on Computational Intelligence

  • Christian Moewes
  • Andreas Nürnberger
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 445)


The preceeding chapters contain original contributions on the occasion of Rudolf Kruse’s 60th birthday. These papers are categorized in the four research areas to which Rudolf Kruse and his research group contributed to, i.e. fuzzy data analysis, hybrid intelligent systems, uncertainty in knowledge-based systems, and intelligent data analysis. Each topic spans one part of this book whereas the corresponding papers are ordered alphabetically by the last name of the first author. The fifth part comprises papers that describe the application of computational intelligence methods to real-world data analysis problems. This gives some more historical insights into the research works of Kruse and his group.


Bayesian Network Fuzzy System Idle Speed Intelligent Data Analysis Hybrid Intelligent System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borgelt, C., Steinbrecher, M., Kruse, R.: Graphical Models: Representations for Learning, Reasoning and Data Mining, 2nd edn. Wiley Series in Computational Statistics. John Wiley & Sons, Inc., Chichester (2009)zbMATHGoogle Scholar
  2. 2.
    Moral, S., Kruse, R., Clarke, E. (eds.): ECSQARU 1993. LNCS, vol. 747. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  3. 3.
    Gabbay, D.M., Kruse, R. (eds.): Handbook of Deafesible Reasoning and Uncertainty Management Systems, Abductive Reasoning and Learning, vol 4. Kluwer (2000)Google Scholar
  4. 4.
    Gebhardt, J., Klose, A., Detmer, H.: Graphical models for industrial planning on complex domains. In: Riccia, G.D., Dubois, D., Kruse, R., Lenz, H.J. (eds.) Decision Theory and Multi-Agent Planning. CISM Courses and Lectures, pp. 131–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis, and Image Recognition. John Wiley & Sons, Ltd., Chichester (1999)zbMATHGoogle Scholar
  6. 6.
    Klawonn, F., Gebhardt, J., Kruse, R.: Fuzzy control on the basis of equality relations with example from idle speed control. IEEE Transactions on Fuzzy Systems 3(3), 336–356 (1995) (outstanding paper award IEEE TFS 1999) CrossRefGoogle Scholar
  7. 7.
    Kruse, R., Meyer, K.D.: Statistics With Vague Data. D. Reidel Publishing Company, Dordrecht (1987)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kruse, R., Siegel, P. (eds.): ECSQAU 1991 and ECSQARU 1991. LNCS, vol. 548. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  9. 9.
    Kruse, R., Schwecke, E., Heinsohn, J.: Uncertainty and Vagueness in Knowledge Based Systems: Numerical Methods. Springer, New York (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kruse, R., Gebhardt, J., Klawonn, F.: Foundations of Fuzzy Systems. John Wiley & Sons, Inc., Chichester (1994)Google Scholar
  11. 11.
    Kruse, R., Gebhardt, J., Palm, R. (eds.): Fuzzy Systems in Computer Science. Vieweg-Verlag, Braunschweig (1994)Google Scholar
  12. 12.
    Kruse, R., Borgelt, C., Held, P., Moewes, C., Steinbrecher, M.: Computational Intelligence. Textbooks in Computer Science. Springer, New York (to appear, 2012)CrossRefGoogle Scholar
  13. 13.
    Michels, K., Klawonn, F., Kruse, R., Nürnberger, A.: Fuzzy Control: Fundamentals, Stability and Design of Fuzzy Controllers. STUDFUZZ, vol. 200. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  14. 14.
    Nauck, D., Klawonn, F., Kruse, R.: Foundations of Neuro-Fuzzy Systems. John Wiley & Sons, Ltd., Chichester (1997)Google Scholar
  15. 15.
    Gabbay, D.M., Kruse, R., Nonnengart, A., Ohlbach, H.J.: FAPR 1997 and ECSQARU 1997. LNCS, vol. 1244. Springer, Heidelberg (1997)zbMATHCrossRefGoogle Scholar
  16. 16.
    Schröder, M., Petersen, R., Klawonn, F., Kruse, R.: Two paradigms of automotive fuzzy logic applications. In: Jamshidi, M., Titli, A., Zadeh, L., Boverie, S. (eds.) Applications of Fuzzy Logic: Towards High Machine Intelligence Quotient Systems. Environmental and Intelligent Manufacturing Systems Series, vol. 9, pp. 153–174. Prentice-Hall, Inc, Upper Saddle River (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Computer ScienceOtto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations