Applications of Intelligent Data Analysis for the Discovery of Gene Regulatory Networks

  • Frank Rügheimer
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 445)


The availability of cheap sequencing and measurement techniques in molecular biology sustains a rapid increase in both quantity and quality of biomedical data. But although such methods provide detailed information about gene expression levels in samples or even individual cells, these extensive data sets merely represent snapshots of system states at given times and under a limited number of conditions. Both the high data dimensionality and low throughput sample preparation present obstacles to the identification of general mechanism underlying biological functions. This contribution documents approaches that rely on Intelligent Data Analysis (IDA) to address challenges to data analysis and interpretation in Computational Biology. Several of the documented approaches were applied within a recent interdisciplinary study dedicated to the exploration of the regulatory systems in the bacterium Bacillus subtilis, which serves as a model for several gram-positive pathogens [6, 16]


Bayesian Network Gene Regulatory Network Association Measure Gaussian Graphical Model Bacterium Bacillus Subtilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arkin, A.P., Schaffer, D.V.: Network news: Innovations in 21st century systems biology. Cell 144(6), 844–849 (2011)CrossRefGoogle Scholar
  2. 2.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000)CrossRefGoogle Scholar
  3. 3.
    Becher, D., Büttner, K., Moche, M., Heßling, B., Hecker, M.: From the genome sequence to the protein inventory of bacillus subtilis. Proteomics 11(15), 2971–2980 (2011)CrossRefGoogle Scholar
  4. 4.
    Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: Genbank. Nucleic. Acids Res. 38(suppl. 1), D46–D51 (2010)Google Scholar
  5. 5.
    Borgelt, C., Yang, X., Nogales-Cadenas, R., Carmona-Saez, P., Pascual-Montano, A.: Finding closed frequent item sets by intersecting transactions. In: Proc. 14th Int. Conf. on Extending Database Technology, EDBT 2011, Uppsala, Sweden, pp. 367–376. ACM Press, New York (2011)CrossRefGoogle Scholar
  6. 6.
    Buescher, J.M., Liebermeister, W., Jules, M., Uhr, M., Muntel, J., Botella, E., Hessling, B., Kleijn, R.J., Le Chat, L., Lecointe, F., Mäder, U., Nicolas, P., Piersma, S., Rügheimer, F., Becher, D., Bessieres, P., Bidnenko, E., Denham, E.L., Dervyn, E., Devine, K.M., Doherty, G., Drulhe, S., Felicori, L., Fogg, M.J., Goelzer, A., Hansen, A., Harwood, C.R., Hecker, M., Hubner, S., Hultschig, C., Jarmer, H., Klipp, E., Leduc, A., Lewis, P., Molina, F., Noirot, P., Peres, S., Pigeonneau, N., Pohl, S., Rasmussen, S., Rinn, B., Schaffer, M., Schnidder, J., Schwikowski, B., van Dijl, J.M., Veiga, P., Walsh, S., Wilkinson, A.J., Stelling, J., Aymerich, S., Sauer, U.: Global network reorganization during dynamic adaptation of Bacillus subtilis metabolism. Science 335(6072), 1099–1103 (2012)CrossRefGoogle Scholar
  7. 7.
    Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95(25), 14,863–14,868 (1998)Google Scholar
  8. 8.
    Faith, J.J., Driscoll, M.E., Fusaro, V.A., Cosgrove, E.J., Hayete, B., Juhn, F.S., Schneider, S.J., Gardner, T.S.: Many microbe microarrays database: uniformly normalized affymetrix compendia with structured experimental metadata. Nucleic. Acids Res. 36(suppl. 1), D866–D870 (2008)Google Scholar
  9. 9.
    Friedman, N., Koller, D.: Being bayesian about network structure. In: Proc. Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI 2000), pp. 201–210 (2000)Google Scholar
  10. 10.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data. J. Comput. Biol. 7(3/4), 601–620 (2000)CrossRefGoogle Scholar
  11. 11.
    Jacob, F., Perrin, D., Sanchez, C., Monod, J.: L’operon: groupe de génes á expression coordoneé par un operateur. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 250(6), 1727–1729 (1960) (in French)Google Scholar
  12. 12.
    Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9(10), 770–780 (2008)CrossRefGoogle Scholar
  13. 13.
    Keseler, I.M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muñiz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarke, M., Shearer, A.G., Mackie, A., Paulsen, I., Gunsalus, R.P., Karp, P.D.: Ecocyc: a comprehensive database of Escherichia coli biology. Nucleic. Acids Res. 39(Database issue), D583–D590 (2011)Google Scholar
  14. 14.
    Licatalosi, D.D., Darnell, R.B.: Rna processing and its regulation: global insights into biological networks. Nat. Rev. Genet. 11, 75–87 (2010)CrossRefGoogle Scholar
  15. 15.
    Marbach, D., Prill, R.J., Schaffter, T., Mattiussi, C., Floreano, D., Stolovitzky, G.: Revealing strengths and weaknesses of methods for gene network inference. Proc. Natl. Acad. Sci. 107(14), 6286–6291 (2010)CrossRefGoogle Scholar
  16. 16.
    Nicolas, P., Mäder, U., Dervyn, E., Rochat, T., Leduc, A., Pigeonneau, N., Bidnenko, E., Marchadier, E., Hoebeke, M., Aymerich, S., Becher, D., Biscicchia, P., Botella, E., Delumeau, O., Doherty, G., Denham, E.L., Fogg, M.J., Fromion, V., Goelzer, A., Hansen, A., Härtig, E., Harwood, C.R., Homuth, G., Jarmer, H., Jules, M., Klipp, E., Le Chat, L., Lecointe, F., Lewis, P., Liebermeister, W., March, A., Mars, R.A.T., Nannapaneni, P., Noone, D., Pohl, S., Rinn, B., Rügheimer, F., Sappa, P.K., Samson, F., Schaffer, M., Schwikowski, B., Steil, L., Stülke, J., Wiegert, T., Devine, K.M., Wilkinson, A.J., van Dijl, J.M., Hecker, M., Völker, U., Bessières, P., Noirot, P.: Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335(6072), 1103–1106 (2012)CrossRefGoogle Scholar
  17. 17.
    Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, New York (2000)zbMATHGoogle Scholar
  18. 18.
    Pe’er, D., Hacohen, N.: Principles and strategies for developing network models in cancer. Cell 144(6), 864–873 (2011)CrossRefGoogle Scholar
  19. 19.
    Rügheimer, F.: Using Enriched Ontology Structure for Improving Statistical Models of Gene Annotation Sets. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 81, pp. 55–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Rügheimer, F., Anand, A., Schwikowski, B.: A software architecture for De Novo induction of regulatory networks from expression data. In: Proceedings of the Journées Ouvertes Biologie Informatique Mathématiques (JOBIM) 2011, Paris, pp. 295–296 (2011)Google Scholar
  21. 21.
    Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)CrossRefGoogle Scholar
  22. 22.
    Vogel, C., Marcotte, E.M.: Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13(4), 227–232 (2012)Google Scholar
  23. 23.
    Werhli, A.V., Grzegorczyk, M., Husmeier, D.: Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics 22(20), 2523–2531 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Biologie SystémiqueInstitut PasteurParisFrance

Personalised recommendations