Investigating the Origins of Intrinsic Motivation in Human Infants

  • Matthew Schlesinger


One of the earliest behaviors driven by intrinsic motivation is visual exploration. In this chapter, I highlight how the development of this capacity is influenced not only by changes in the brain that take place after birth but also by the acquisition of oculomotor skill. To provide a context for interpreting these developmental changes, I then survey three theoretical perspectives that are available for explaining how and why visual exploration develops. Next, I describe work on the development of perceptual completion, which offers a case study on the development of visual exploration and the role of oculomotor skill. I conclude by discussing a number of challenges and open questions that are suggested by this work.


Intrinsic Motivation Young Infant Early Infancy Posterior Parietal Cortex Visual Exploration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. .
    Albright, T., Stoner, G.: Contextual influences on visual processing. Annu. Rev. Neurosci. 25, 339–379 (2002)CrossRefGoogle Scholar
  2. .
    Amso, D., Johnson, S.P.: Learning by selection: Visual search and object perception in young infants. Dev. Psychol. 42, 1236–1245 (2006)CrossRefGoogle Scholar
  3. .
    Antinucci, F.: Cognitive Structure and Development in Nonhuman Primates. Erlbaum, Hillsdale (1989)Google Scholar
  4. .
    Baldassarre, G.: What are intrinsic motivations? A biological perspective. In: Cangelosi, A., Triesch, J., Fasel, I., Rohlfing, K., Nori, F., Oudeyer, P.-Y., Schlesinger, M., Nagai, Y. (eds.) Proceedings of the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob-2011). IEEE, New York, Frankfurt, Germany (2011)Google Scholar
  5. .
    Banks, M., Bennett, P.: Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. J. Opt. Soc. Am. 5, 2059–2079 (1988)CrossRefGoogle Scholar
  6. .
    Barborica, A., Ferrera, V.: Modification of saccades evoked by stimulation of frontal eye field during invisible target tracking. J. Neurosci. 24, 3260–3267 (2004)CrossRefGoogle Scholar
  7. .
    Barto, A., Singh, S., Chentanez, N.: Intrinsically motivated learning of hierarchical collections of skills. In: UCSD Institute for Neural Computation I. (ed.) Proceedings of the 3rd International Conference on Development and Learning, San Diego (2004)Google Scholar
  8. .
    Berlyne, D.: A theory of human curiosity. Br. J. Psychol. 45, 180–191 (1954)Google Scholar
  9. .
    Bjorklund, D.: The role of immaturity in human development. Psychol. Bull. 122, 153–169 (1997)CrossRefGoogle Scholar
  10. .
    Bornstein, M., Sigman, M.: Continuity in mental development from infancy. Child Dev. 57, 251–274 (1986)CrossRefGoogle Scholar
  11. .
    Bowlby, J.: Attachment. Basic Books Inc, New York (1969)Google Scholar
  12. .
    Bromberg-Martin, E., Matsumoto, M., Hikosaka, O.: Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron 68, 815–834 (2010)CrossRefGoogle Scholar
  13. .
    Bronson, G.: Infant differences in rate of visual encoding. Child Dev. 62, 44–54 (1991)CrossRefGoogle Scholar
  14. .
    Canfield, R., Kirkham, N.: Infant cortical development and the prospective control of saccadic eye movements. Infancy 2, 197–211 (2001)CrossRefGoogle Scholar
  15. .
    Case, R.: Intellectual Development: Birth to Adulthood. Academic, New York (1985)Google Scholar
  16. .
    Charlesworth, W.: The role of surprise in development. In: Studies in Cognitive Development: Essays in Honor of Jean Piaget, pp. 257–314. Oxford University Press, Oxford (1969)Google Scholar
  17. .
    Dannemiller, J.: Competition in early exogenous orienting between 7 and 21 weeks. J. Exp. Child Psychol. 76, 253–274 (2000)CrossRefGoogle Scholar
  18. .
    Edelman, G.: Neural Darwinism. Basic Books Inc., New York (1987)Google Scholar
  19. .
    Ferrera, V., Barborica, A.: Internally generated error signals in monkey frontal eye field during an inferred motion task. J. Neurosci. 30, 11612–11623 (2010)CrossRefGoogle Scholar
  20. .
    Fox, N., Kagan, J., Weiskopf, S.: The growth of memory during infancy. Genet. Psychol. Monogr. 99, 91–130 (1979)Google Scholar
  21. .
    Gilmore, R.O., Thomas, H.: Examining individual differences in infants’ habituation patterns using objective quantitative techniques. Infant Behav. Dev. 25, 399–412 (2002)CrossRefGoogle Scholar
  22. .
    Ginsburg, H., Opper, S.: Piaget’s Theory of Intellectual Development. Prentice Hall, Englewood Cliffs (1988)Google Scholar
  23. .
    Gottlieb, J.P., Kusunoki, M., Goldberg, M.E.: The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998)CrossRefGoogle Scholar
  24. .
    Greenough, W., Black, J.: Experience, neural plasticity, and psychological development. In: Experience, Neural Plasticity, and Psychological Development, pp. 29–40. Johnson and Johnson Pediatric Institute, New York (1999)Google Scholar
  25. .
    Haith, M.M., Hazan, C., Goodman, G.: Expectations and anticipation of dynamic visual events by 3.5-month-old babies. Child Dev. 59, 467–479 (1988)Google Scholar
  26. .
    Haith, M.: Rules that babies look by: The organization of newborn visual activity. Erlbaum, Hillsdale (1980)Google Scholar
  27. .
    Haith, M., Wentworth, N., Canfield, R.: The formation of expectations in early infancy. Adv. Infancy Res. 8, 251–297 (1993)Google Scholar
  28. .
    Hess, R., Field, D.: Integration of contours: New insights. Trends Cogn. Sci. 3, 480–486 (1999)CrossRefGoogle Scholar
  29. .
    Isoda, M., Hikosaka, O.: A neural correlate of motivational conflict in the superior colliculus of the macaque. J. Neurophysiol. 100, 1332–1342 (2008)CrossRefGoogle Scholar
  30. .
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40, 1489–1506 (2000)CrossRefGoogle Scholar
  31. .
    Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001)CrossRefGoogle Scholar
  32. .
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998)CrossRefGoogle Scholar
  33. .
    Johnson, M.: Cortical maturation and the development of visual attention in early infancy. J. Cogn. Neurosci. 2, 81–95 (1990)CrossRefGoogle Scholar
  34. .
    Johnson, S.: Development of perceptual completion in infancy. Psychol. Sci. 15, 769–775 (2004)CrossRefGoogle Scholar
  35. .
    Johnson, S., Slemmer, J., Amso, D.: Where infants look determines how they see: Eye movements and object perception performance in 3-month-olds. Infancy 6, 185–201 (2004)CrossRefGoogle Scholar
  36. .
    Kagan, J.: Motives and development. J. Pers. Soc. Psychol. 22, 51–66 (1972)CrossRefGoogle Scholar
  37. .
    Klahr, D., MacWhinney, B.: Information processing. In: Cognitive, Language, and Perceptual Development, vol. 2, pp. 631–678. Wiley, New York (1998)Google Scholar
  38. .
    Maurer, D., Salapatek, P.: Developmental changes in the scanning of faces by young infants. Child Dev. 47, 523–527 (1976)CrossRefGoogle Scholar
  39. .
    McCall, R., Carriger, M.: A meta-analysis of infant habituation and recognition memory as predictors of later iq. Child Dev. 64, 57–79 (1993)CrossRefGoogle Scholar
  40. .
    Merrick, K.E.: Novelty and beyond: Towards combined motivation models and integrated learning architectures. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 209–233. Springer, Berlin (2012)Google Scholar
  41. .
    Nehmzow, U., Gatsoulis, Y., Kerr, E., Condell, J., Siddique, N.H., McGinnity, M.T.: Novelty detection as an intrinsic motivation for cumulative learning robots. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 185–207. Springer, Berlin (2012)Google Scholar
  42. .
    Ognibene, D., Pezzulo, G., Baldassare, G.: Learning to look in different environments: An active-vision model which learns and readapts visual routines. In: From Animals to Animats, vol. 11, pp. 199–210. Springer, Berlin (2010)Google Scholar
  43. .
    Oudeyer, P.-Y. Kaplan, F.: What is intrinsic motivation? A typology of computational approaches. Front. Neurorobot. 1, 1–14 (2007)Google Scholar
  44. .
    Piaget, J.: The Origins of Intelligence in Children. International Universities Press, New York (1952)CrossRefGoogle Scholar
  45. .
    Redgrave, P., Gurney, K.: The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci. 7, 967–975 (2006)CrossRefGoogle Scholar
  46. .
    Redgrave, P., Gurney, K., Stafford, T., Thirkettle, M., Lewis, J.: The role of the basal ganglia in discovering novel actions. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 129–149. Springer, Berlin (2012)Google Scholar
  47. .
    Ruthazer, E., Stryker, M.: The role of activity in the development of long-range horizontal connections in area 17 of the ferret. J. Neurosci. 16, 7253–7269 (1996)Google Scholar
  48. .
    Schlesinger, M., Amso, D., Johnson, S.: The neural basis for visual selective attention in young infants: A computational account. Adap. Behav. 15, 135–148 (2007a)CrossRefGoogle Scholar
  49. .
    Schlesinger, M., Amso, D., Johnson, S.: Simulating infants’ gaze patterns during the development of perceptual completion. In: Berthouze, L., Prince, C.G.and Littman, M., Kozima, H., Balkenius, C. (eds.) Proceedings of the Seventh International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, pp. 157–164. Lund University Cognitive Studies, Lund, New Brunswick, New Jersey (2007b)Google Scholar
  50. .
    Schlesinger, M., Amso, D., Johnson, S.: Increasing spatial competition enhances visual prediction learning. In: Cangelosi, A., Triesch, J., Fasel, I., Rohlfing, K., Nori, F., Oudeyer, P.-Y., Schlesinger, M., Nagai, Y. (eds.) Proceedings of the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob-2011). IEEE, New York, Frankfurt, Germany (2011)Google Scholar
  51. .
    Schmidhuber, J.: Simple algorithmic theory of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science, music, jokes. J. SICE 48, 21–32 (2009)Google Scholar
  52. .
    Shafritz, K.M., Gore, J.C., Marois, R.: The role of the parietal cortex in visual feature binding. Proc. Natl. Acad. Sci. U. S. A. 99, 10917–10922 (2002)CrossRefGoogle Scholar
  53. .
    Siegler, R., Jenkins, E.: How Children Discover Strategies. Erlbaum, Hillsdale (1989)Google Scholar
  54. .
    Slater, A., Johnson, S., Brown, E., Badenoch, M.: Newborn infants’ perception of partly occluded objects. Infant Behav. Dev. 19, 145–148 (1996)CrossRefGoogle Scholar
  55. .
    Sokolov, E.: Perception and the Conditioned Reflex. Pergamon, New York (1963)Google Scholar
  56. .
    Sporns, O., Edelman, G.: Solving bernstein’s problem: A proposal for the development of coordinated movement by selection. Child Dev. 64, 960–981 (1993)CrossRefGoogle Scholar
  57. .
    Vygotsky, L.: The Mind in Society: The Development of Higher Psychological Processes. Harvard University Press, Cambridge (1978)Google Scholar
  58. .
    Wentworth, N., Haith, M.: Infants’ acquisition of spatiotemporal expectations. Dev. Psychol. 34, 247–257 (1998)CrossRefGoogle Scholar
  59. .
    White, R.: Motivation reconsidered: The concept of competence. Psychol. Rev. 66, 297–333 (1959)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PsychologySouthern Illinois University CarbondaleCarbondaleUSA

Personalised recommendations