The Formation of the First Massive Black Holes

  • Zoltán Haiman
Part of the Astrophysics and Space Science Library book series (ASSL, volume 396)


Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z = 6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, LISA and other instruments.


Black Hole Dark Matter High Redshift Dark Matter Halo Mass Accretion Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wishes to thank the editors of this volume for their patience during the preparation of this article. I would also like to thank my recent collaborators, especially Taka Tanaka, Cien Shang, Mark Dijkstra and Greg Bryan, whose work was especially emphasized here, and Eliot Quataert for permission to draw on material in our earlier joint review. The work described here was supported in part by the NSF, NASA, and by the Polányi Program of the Hungarian National Office for Research and Technology (NKTH).


  1. Abel, T., Anninos, P., Zhang, Y., Norman, M.L.: Modeling primordial gas in numerical cosmology. New Astron. 2, 181–207 (1997)ADSCrossRefGoogle Scholar
  2. Abel, T., Bryan, G.L., Norman, M.L.: The formation and fragmentation of primordial molecular clouds. ApJ 540, 39–44 (2000)ADSCrossRefGoogle Scholar
  3. Abel, T., Bryan, G.L., Norman, M.L.: The formation of the first star in the Universe. Science 295, 93–98 (2002)ADSCrossRefGoogle Scholar
  4. Abel, T., Haiman, Z.: The role of H2 molecules in cosmological structure formation In: Combes, F., Pineau des Forets, G. (eds.) Molecular Hydrogen in Space p. 237. Cambridge Contemporary Astrophysics. Cambridge University Press, Cambridge (2001) (ISBN 0521782244)Google Scholar
  5. Alexander, D.M., Bauer, F.E., Brandt, W.N., Schneider, D.P., Hornschemeier, A. E., Vignali, C., Barger, A.J., Broos, P.S., Cowie, L.L., Garmire, G.P., Townsley, L.K., Bautz, M.W., Chartas, G., Sargent, W.L.W.: The Chandra deep field north survey. XIII. 2 Ms point-source catalogs. AJ 126, 539–574 (2003)ADSCrossRefGoogle Scholar
  6. Alvarez, M.A., Wise, J.H., Abel, T.: Accretion onto the first stellar-mass black holes. ApJL 701, L133–L137 (2009)ADSCrossRefGoogle Scholar
  7. Amaro-Seoane, P., Sesana, A., Hoffman, L., Benacquista, M., Eichhorn, C., Makino, J., Spurzem, R.: Triplets of supermassive black holes: astrophysics, gravitational waves and detection. MNRAS 402, 2308–2320 (2010)ADSCrossRefGoogle Scholar
  8. Armitage, P.J., Natarajan, P.: Accretion during the merger of supermassive black holes. ApJL 567, L9–L12 (2002)ADSCrossRefGoogle Scholar
  9. Arons, J.: Photon bubbles - Overstability in a magnetized atmosphere. ApJ 388, 561–578 (1992)ADSCrossRefGoogle Scholar
  10. Arun, K.G., Babak, S., Berti, E., Cornish, N., Cutler, C., Gair, J., Hughes, S.A., Iyer, B.R., Lang, R.N., Mandel, I., Porter, E.K., Sathyaprakash, B.S., Sinha, S., Sintes, A.M., Trias, M., Van Den Broeck, C., Volonteri, M.: Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce. Classical Quant. Grav. 26(9), 094027 (2009)ADSCrossRefGoogle Scholar
  11. Baker, J.G., Boggs, W.D., Centrella, J., Kelly, B.J., McWilliams, S.T., Miller, M.C., van Meter, J.R.: Modeling kicks from the merger of generic black hole binaries. ApJL 682, L29–L32 (2008)ADSCrossRefGoogle Scholar
  12. Baker, J.G., McWilliams, S.T., van Meter, J.R., Centrella, J., Choi, D.-I., Kelly, B.J., and Koppitz, M.: Binary black hole late inspiral: simulations for gravitational wave observations. Phys. Rev. D 75(12), 124024 (2007)ADSCrossRefGoogle Scholar
  13. Barkana, R., Haiman, Z., Ostriker, J.P.: Constraints on warm dark matter from cosmological reionization. ApJ 558, 482–496 (2001)ADSCrossRefGoogle Scholar
  14. Barkana, R., Loeb, A.: High-redshift galaxies: their predicted size and surface brightness distributions and their gravitational lensing probability. ApJ 531, 613–623 (2000)ADSCrossRefGoogle Scholar
  15. Baumgardt, H., Makino, J., Hut, P., McMillan, S., Portegies Zwart, S.: A dynamical model for the globular cluster G1. ApJL 589, L25–L28 (2003)ADSCrossRefGoogle Scholar
  16. Begelman, M.C.: Black holes in radiation-dominated gas - an analogue of the Bondi accretion problem. MNRAS 184, 53–67 (1978)ADSGoogle Scholar
  17. Begelman, M.C.: Super-eddington atmospheres that do not blow away. ApJ 551, 897–906 (2001)ADSCrossRefGoogle Scholar
  18. Begelman, M.C.: Super-eddington fluxes from thin accretion disks? ApJL 568, L97–L100 (2002)ADSCrossRefGoogle Scholar
  19. Begelman, M.C.: Evolution of supermassive stars as a pathway to black hole formation. MNRAS 402, 673–681 (2010)ADSCrossRefGoogle Scholar
  20. Begelman, M.C., Blandford, R.D., Rees, M.J.: Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980)ADSCrossRefGoogle Scholar
  21. Begelman, M.C., Meier, D.L.: Thick accretion disks - Self-similar, supercritical models. ApJ 253, 873–896 (1982)ADSCrossRefGoogle Scholar
  22. Begelman, M.C., Rees, M.J.: The fate of dense stellar systems. MNRAS 185, 847–860 (1978)ADSGoogle Scholar
  23. Begelman, M.C., Rossi, E.M., Armitage, P.J.: Quasi-stars: accreting black holes inside massive envelopes. MNRAS 387, 1649–1659 (2008)ADSCrossRefGoogle Scholar
  24. Begelman, M.C., Shlosman, I.: Angular momentum transfer and lack of fragmentation in self-gravitating accretion flows. ApJL 702, L5–L8 (2009)ADSCrossRefGoogle Scholar
  25. Begelman, M.C., Volonteri, M., Rees, M.J.: Formation of supermassive black holes by direct collapse in pre-galactic haloes. MNRAS 370, 289–298 (2006)ADSGoogle Scholar
  26. Binney, J.: The physics of dissipational galaxy formation. ApJ 215, 483–491 (1977)ADSCrossRefGoogle Scholar
  27. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (1987)zbMATHGoogle Scholar
  28. Blaes, O., Socrates, A.: Local dynamical instabilities in magnetized, radiation pressure-supported accretion disks. ApJ 553, 987–998 (2001)ADSCrossRefGoogle Scholar
  29. Blandford, R.D., Begelman, M.C.: On the fate of gas accreting at a low rate on to a black hole. MNRAS 303, L1–L5 (1999)ADSCrossRefGoogle Scholar
  30. Blandford, R.D., Begelman, M.C.: Two-dimensional adiabatic flows on to a black hole - I. Fluid accretion. MNRAS 349, 68–86 (2004)Google Scholar
  31. Blecha, L., Loeb, A.: Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes. MNRAS 390, 1311–1325 (2008)ADSGoogle Scholar
  32. Brinchmann, J., Pettini, M., Charlot, S.: New insights into the stellar content and physical conditions of star-forming galaxies at z = 2–3 from spectral modelling. MNRAS 385, 769–782 (2008)ADSCrossRefGoogle Scholar
  33. Bromley, J.M., Somerville, R.S., Fabian, A.C.: High-redshift quasars and the supermassive black hole mass budget: constraints on quasar formation models. MNRAS 350, 456–472 (2004)ADSCrossRefGoogle Scholar
  34. Bromm, V., Coppi, P.S., Larson, R.B.: Forming the first stars in the Universe: The fragmentation of primordial gas. ApJL 527, L5–L8 (1999)ADSCrossRefGoogle Scholar
  35. Bromm, V., Coppi, P.S., Larson, R.B.: The formation of the first stars. I. The primordial star-forming cloud. ApJ 564, 23–51 (2002)Google Scholar
  36. Bromm, V., Ferrara, A., Heger, A.: First Stars: Formation, Evolution and Feedback Effects, p. 180. Cambridge University Press, Cambridge (2009)Google Scholar
  37. Bromm, V., Loeb, A.: Formation of the first supermassive black holes. ApJ 596, 34–46 (2003)ADSCrossRefGoogle Scholar
  38. Carr, B.J., Bond, J.R., Arnett, W.D.: Cosmological consequences of Population III stars. ApJ 277, 445–469 (1984)ADSCrossRefGoogle Scholar
  39. Cattaneo, A., Bernardi, M.: The quasar epoch and the stellar ages of early-type galaxies. MNRAS 344, 45–52 (2003)ADSCrossRefGoogle Scholar
  40. Cavaliere, A., Giacconi, R., Menci, N.: X-raying the star formation history of the Universe. ApJL 528, L77–L80 (2000)ADSCrossRefGoogle Scholar
  41. Cen, R., Haiman, Z.: Quasar strömgren spheres before cosmological reionization. ApJL 542, L75–L78 (2000)ADSCrossRefGoogle Scholar
  42. Ciardi, B., Loeb, A.: Expected number and flux distribution of gamma-ray burst afterglows with high redshifts. ApJ 540, 687–696 (2000)ADSCrossRefGoogle Scholar
  43. Ciotti, L., Ostriker, J.P.: Cooling flows and quasars. II. Detailed models of feedback-modulated accretion flows. ApJ 551, 131–152 (2001)Google Scholar
  44. Clark, P.C., Glover, S.C.O., Klessen, R.S.: The first stellar cluster. ApJ 672, 757–764 (2008)ADSCrossRefGoogle Scholar
  45. Colbert, E.J.M., Mushotzky, R.F.: The nature of accreting black holes in nearby galaxy nuclei. ApJ 519, 89–107 (1999)ADSCrossRefGoogle Scholar
  46. Comerford, J.M., Haiman, Z., Schaye, J.: Constraining the redshift z 6 quasar luminosity function using gravitational lensing. ApJ 580, 63–72 (2002)ADSCrossRefGoogle Scholar
  47. Cucchiara, A., Levan, A.J., Fox, D.B., Tanvir, N.R., Ukwatta, T.N., Berger, E., Krühler, T., Küpcü Yoldaş, A., Wu, X.F., Toma, K., Greiner, J., Olivares E., F., Rowlinson, A., Amati, L., Sakamoto, T., Roth, K., Stephens, A., Fritz, A., Fynbo, J.P.U., Hjorth, J., Malesani, D., Jakobsson, P., Wiersema, K., O’Brien, P.T. Soderberg, A.M., Foley, R.J., Fruchter, A.S., Rhoads, J., Rutledge, R.E., Schmidt, B.P., Dopita, M.A., Podsiadlowski, P., Willingale, R., Wolf, C., Kulkarni, S.R., D’Avanzo, P.: A photometric redshift of z   9.4 for GRB 090429B. ApJ 736, 7 (2011)Google Scholar
  48. Dalal, N., Pen, U.-L., Seljak, U.: Large-scale BAO signatures of the smallest galaxies. JCAP 11, 7 (2010)ADSCrossRefGoogle Scholar
  49. Devecchi, B., Volonteri, M.: Formation of the first nuclear clusters and massive black holes at high redshift. ApJ 694, 302–313 (2009)ADSCrossRefGoogle Scholar
  50. Di Matteo, T., Croft, R.A.C., Springel, V., Hernquist, L.: Black hole growth and activity in a Λ cold dark matter Universe. ApJ 593, 56–68 (2003)ADSCrossRefGoogle Scholar
  51. Dijkstra, M., Haiman, Z., Mesinger, A., Wyithe, J.S.B.: Fluctuations in the high-redshift Lyman-Werner background: close halo pairs as the origin of supermassive black holes. MNRAS 391, 1961–1972 (2008)ADSCrossRefGoogle Scholar
  52. Dijkstra, M., Haiman, Z., Rees, M.J., Weinberg, D.H.: Photoionization feedback in low-mass galaxies at high redshift. ApJ 601, 666–675 (2004)ADSCrossRefGoogle Scholar
  53. Dijkstra, M., Wyithe, J.S.B.: Seeing through the trough: outflows and the detectability of Lyα emission from the first galaxies. MNRAS 408, 352–361 (2010)ADSCrossRefGoogle Scholar
  54. Dotan, C., Shaviv, N.J.: Super-eddington slim accretion discs with winds. MNRAS 413, 1623–1632 (2011)ADSCrossRefGoogle Scholar
  55. Draine, B.T., Bertoldi, F.: Structure of stationary photodissociation fronts. ApJ 468, 269 (1996)ADSCrossRefGoogle Scholar
  56. Efstathiou, G.: Suppressing the formation of dwarf galaxies via photoionization. MNRAS 256, 43P–47P (1992)ADSGoogle Scholar
  57. Efstathiou, G., Rees, M.J.: High-redshift quasars in the cold dark matter cosmogony. MNRAS 230, 5P (1988)ADSGoogle Scholar
  58. Eisenstein, D.J., Loeb, A.: Origin of quasar progenitors from the collapse of low-spin cosmological perturbations. ApJ 443, 11–17 (1995)ADSCrossRefGoogle Scholar
  59. Elvis, M., Wilkes, B.J., McDowell, J.C., Green, R.F., Bechtold, J., Willner, S.P., Oey, M.S., Polomski, E., Cutri, R.: Atlas of quasar energy distributions. ApJS 95, 1–68 (1994)ADSCrossRefGoogle Scholar
  60. Escala, A., Larson, R.B., Coppi, P.S., Mardones, D.: The role of gas in the merging of massive black holes in galactic nuclei. II. Black hole merging in a nuclear gas disk. ApJ 630, 152–166 (2005)Google Scholar
  61. Fan, X.: Evolution of high-redshift quasars. New Astron. Rev. 50, 665–671 (2006)ADSCrossRefGoogle Scholar
  62. Fan, X., Strauss, M.A., Schneider, D.P., Becker, R.H., White, R.L., Haiman, Z., Gregg, M., Pentericci, L., Grebel, E.K., Narayanan, V.K., Loh, Y.-S., Richards, G.T., Gunn, J.E., Lupton, R.H., Knapp, G.R., Ivezić, Ž., Brandt, W.N., Collinge, M., Hao, L., Harbeck, D., Prada, F., Schaye, J., Strateva, I., Zakamska, N., Anderson, S., Brinkmann, J., Bahcall, N.A., Lamb, D.Q., Okamura, S., Szalay, A., York, D.G.: A survey of z > 5. 7 quasars in the sloan digital sky survey. II. Discovery of three additional quasars at z > 6. AJ 125, 1649–1659 (2003)ADSCrossRefGoogle Scholar
  63. Farrell, S.A., Webb, N.A., Barret, D., Godet, O., Rodrigues, J.M.: An intermediate-mass black hole of over 500 solar masses in the galaxy ESO243-49. Nature 460, 73–75 (2009)ADSCrossRefGoogle Scholar
  64. Ferrarese, L.: Beyond the bulge: a fundamental relation between supermassive black holes and dark matter halos. ApJ 578, 90–97 (2002)ADSCrossRefGoogle Scholar
  65. Freese, K., Ilie, C., Spolyar, D., Valluri, M., Bodenheimer, P.: Supermassive dark stars: detectable in JWST. ApJ 716, 1397–1407 (2010)ADSCrossRefGoogle Scholar
  66. Fuller, G.M., Woosley, S.E., Weaver, T.A.: The evolution of radiation-dominated stars. I - Nonrotating supermassive stars. ApJ 307, 675–686 (1986)Google Scholar
  67. Galli, D., Palla, F.: The chemistry of the early Universe. A&A 335, 403–420 (1998)ADSGoogle Scholar
  68. Gammie, C.F.: Photon bubbles in accretion discs. MNRAS 297, 929–935 (1998)ADSCrossRefGoogle Scholar
  69. Garnett, D.R., Kennicutt, R.C. Jr., Chu, Y.-H., Skillman, E.D.: He II emission in extragalactic H II regions. ApJ 373, 458–464 (1991)ADSCrossRefGoogle Scholar
  70. Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S.M., Filippenko, A.V., Green, R., Grillmair, C., Ho, L.C., Kormendy, J., Lauer, T.R., Magorrian, J., Pinkney, J., Richstone, D., Tremaine, S.: A relationship between nuclear black hole mass and galaxy velocity dispersion. ApJL 539, L13–L16 (2000)ADSCrossRefGoogle Scholar
  71. Gebhardt, K., Rich, R.M., Ho, L.C.: A 20,000 M black hole in the stellar cluster G1. ApJL 578, L41–L45 (2002)ADSCrossRefGoogle Scholar
  72. Gebhardt, K., Rich, R.M., Ho, L.C.: An intermediate-mass black hole in the globular cluster G1: Improved significance from New Keck and Hubble Space Telescope observations. ApJ 634, 1093–1102 (2005)ADSCrossRefGoogle Scholar
  73. Gnedin, N.Y., Ostriker, J.P.: Reionization of the Universe and the early production of metals. ApJ 486, 581 (1997)ADSCrossRefGoogle Scholar
  74. Goodman, J.: Self-gravity and quasi-stellar object discs. MNRAS 339, 937–948 (2003)Google Scholar
  75. Goswami, S., Umbreit, S., Bierbaum, M., Rasio, F.A.: Formation of massive black holes in dense star clusters. II. IMF and primordial mass segregation. ApJ 752, 43 (2012)Google Scholar
  76. Gould, A., Rix, H.-W.: Binary black hole mergers from planet-like migrations. ApJL 532, L29–L32 (2000)ADSCrossRefGoogle Scholar
  77. Greif, T., Springel, V., White, S., Glover, S., Clark, P., Smith, R., Klessen, R., Bromm, V.: Simulations on a moving mesh: the clustered formation of population III protostars. ApJ 737, 75 (2011a)ADSCrossRefGoogle Scholar
  78. Greif, T.H., White, S.D.M., Klessen, R.S., Springel, V: The delay of population III star formation by supersonic streaming velocities. ApJ 736, 147 (2011b)ADSCrossRefGoogle Scholar
  79. Greiner, J., Krühler, T., Fynbo, J.P.U., Rossi, A., Schwarz, R., Klose, S., Savaglio, S., Tanvir, N.R., McBreen, S., Totani, T., Zhang, B.B., Wu, X.F., Watson, D., Barthelmy, S.D., Beardmore, A.P., Ferrero, P., Gehrels, N., Kann, D.A., Kawai, N., Yoldaş, A.K., Mészáros, P., Milvang-Jensen, B., Oates, S.R., Pierini, D., Schady, P., Toma, K., Vreeswijk, P.M., Yoldaş, A., Zhang, B., Afonso, P., Aoki, K., Burrows, D.N., Clemens, C., Filgas, R., Haiman, Z., Hartmann, D.H., Hasinger, G., Hjorth, J., Jehin, E., Levan, A.J., Liang, E.W., Malesani, D., Pyo, T.-S., Schulze, S., Szokoly, G., Terada, K., Wiersema, K.: GRB 080913 at Redshift 6.7. ApJ 693, 1610–1620 (2009)ADSCrossRefGoogle Scholar
  80. Gualandris, A., Merritt, D.: Ejection of supermassive black holes from galaxy cores. ApJ 678, 780–797 (2008)ADSCrossRefGoogle Scholar
  81. Guedes, J., Madau, P., Kuhlen, M., Diemand, J., Zemp, M.: Simulations of recoiling massive black holes in the via lactea halo. ApJ 702, 890–900 (2009)ADSCrossRefGoogle Scholar
  82. Guedes, J., Madau, P., Mayer, L., Callegari, S.: Recoiling massive black holes in gas-rich galaxy mergers. ApJ 729, 125 (2011)ADSCrossRefGoogle Scholar
  83. Gürkan, M.A., Freitag, M., Rasio, F.A.: Formation of massive black holes in dense star clusters. I. Mass segregation and core collapse. ApJ 604, 632–652 (2004)Google Scholar
  84. Haehnelt, M.G., Natarajan, P., Rees, M.J.: High-redshift galaxies, their active nuclei and central black holes. MNRAS 300, 817–827 (1998)ADSCrossRefGoogle Scholar
  85. Haehnelt, M.G., Rees, M.J.: The formation of nuclei in newly formed galaxies and the evolution of the quasar population. MNRAS 263, 168–178 (1993)ADSGoogle Scholar
  86. Haiman, Z.: Constraints from gravitational recoil on the growth of supermassive black holes at high redshift. ApJ 613, 36–40 (2004)ADSCrossRefGoogle Scholar
  87. Haiman, Z.: Galaxy formation: caught in the act? Nature 430, 979–980 (2004)ADSCrossRefGoogle Scholar
  88. Haiman, Z., Abel, T., Rees, M.J.: The radiative feedback of the first cosmological objects. ApJ 534, 11–24 (2000)ADSCrossRefGoogle Scholar
  89. Haiman, Z., Bryan, G.L.: Was star formation suppressed in high-redshift minihalos? ApJ 650, 7–11 (2006)ADSCrossRefGoogle Scholar
  90. Haiman, Z., Cen, R.: A constraint on the gravitational lensing magnification and age of the redshift z = 6.28 quasar SDSS 1030+0524. ApJ 578, 702–707 (2002)ADSCrossRefGoogle Scholar
  91. Haiman, Z., Ciotti, L., Ostriker, J.P.: Reasoning from fossils: learning from the local black hole population about the evolution of quasars. ApJ 606, 763–773 (2004)ADSCrossRefGoogle Scholar
  92. Haiman, Z., Holder, G.P.: The reionization history at high redshifts. I. Physical models and new constraints from cosmic microwave background polarization. ApJ 595, 1–12 (2003)Google Scholar
  93. Haiman, Z., Hui, L.: Constraining the lifetime of quasars from their spatial clustering. ApJ 547, 27–38 (2001)ADSCrossRefGoogle Scholar
  94. Haiman, Z., Jimenez, R., Bernardi, M.: Reconstructing the cosmic evolution of quasars from the age distribution of local early-type galaxies. ApJ 658, 721–730 (2007)ADSCrossRefGoogle Scholar
  95. Haiman, Z., Kocsis, B., Menou, K.: The population of viscosity- and gravitational wave-driven supermassive black hole binaries among luminous active galactic nuclei. ApJ 700, 1952–1969 (2009)ADSCrossRefGoogle Scholar
  96. Haiman, Z., Loeb, A.: Detection of the first star clusters with NGST. In: Smith, E.P., Koratkar, A. (eds.) Science with the NGST, vol. 133 of Astronomical Society of the Pacific Conference Series, p. 251 (1998)Google Scholar
  97. Haiman, Z., Loeb, A.: Observational signatures of the first quasars. ApJ 503, 505 (1998)ADSCrossRefGoogle Scholar
  98. Haiman, Z., Loeb, A.: Determining the redshift of reionization from the spectra of high-redshift sources. ApJ 519, 479–485 (1999)ADSCrossRefGoogle Scholar
  99. Haiman, Z., Loeb, A.: What is the highest plausible redshift of luminous quasars? ApJ 552, 459–463 (2001)ADSCrossRefGoogle Scholar
  100. Haiman, Z., Quataert, E.: The formation and evolution of the first massive black holes. In: Barger, A.J. (ed.), Supermassive Black Holes in the Distant Universe, vol. 308 of Astrophysics and Space Science Library, p. 147 (2004)Google Scholar
  101. Haiman, Z., Quataert, E., Bower, G.C.: Modeling the counts of faint radio-loud quasars: constraints on the supermassive black hole population and predictions for high redshift. ApJ 612, 698–705 (2004)ADSCrossRefGoogle Scholar
  102. Haiman, Z., Rees, M.J., Loeb, A.: Destruction of molecular hydrogen during cosmological reionization. ApJ 476, 458 (1997)ADSCrossRefGoogle Scholar
  103. Haiman, Z., Thoul, A.A., Loeb, A.: Cosmological formation of low-mass objects. ApJ 464, 523 (1996)ADSCrossRefGoogle Scholar
  104. Haislip, J.B., Nysewander, M.C., Reichart, D.E., Levan, A., Tanvir, N., Cenko, S.B., Fox, D.B., Price, P.A., Castro-Tirado, A.J. Gorosabel, J., Evans, C.R., Figueredo, E., MacLeod, C.L., Kirschbrown, J.R., Jelinek, M., Guziy, S., Postigo, A.D.U., Cypriano, E.S., Lacluyze, A., Graham, J., Priddey, R., Chapman, R., Rhoads, J., Fruchter, A.S., Lamb, D.Q., Kouveliotou, C., Wijers, R.A.M.J., Bayliss, M.B., Schmidt, B.P., Soderberg, A.M., Kulkarni, S.R., Harrison, F.A., Moon, D.S., Gal-Yam, A., Kasliwal, M.M., Hudec, R., Vitek, S., Kubanek, P., Crain, J.A., Foster, A.C., Clemens, J.C., Bartelme, J.W., Canterna, R., Hartmann, D.H., Henden, A.A., Klose, S., Park, H.-S., Williams, G.G., Rol, E., O’Brien, P., Bersier, D., Prada, F., Pizarro, S., Maturana, D., Ugarte, P., Alvarez, A., Fernandez, A.J.M., Jarvis, M.J., Moles, M., Alfaro, E., Ivarsen, K.M., Kumar, N.D., Mack, C.E., Zdarowicz, C.M., Gehrels, N., Barthelmy, S., Burrows, D.N.: A photometric redshift of z=6. 39 ± 0. 12 for GRB 050904. Nature 440, 181–183 (2006)ADSCrossRefGoogle Scholar
  105. Hawley, J.F., Balbus, S.A.: The dynamical structure of nonradiative black hole accretion flows. ApJ 573, 738–748 (2002)ADSCrossRefGoogle Scholar
  106. Heger, A., Fryer, C.L., Woosley, S.E., Langer, N., Hartmann, D.H.: How massive single stars end their life. ApJ 591, 288–300 (2003)ADSCrossRefGoogle Scholar
  107. Heggie, D.C.: Binary evolution in stellar dynamics. MNRAS 173, 729–787 (1975)ADSGoogle Scholar
  108. Hirasawa, T.: Formation of protogalaxies and molecular processes in hydrogen gas. Progr. Theor. Phys. 42, 523–543 (1969)ADSCrossRefGoogle Scholar
  109. Ho, L.C.: The CO tully-fisher relation and implications for the host galaxies of high-redshift quasars. ApJ 669, 821–829 (2007)ADSCrossRefGoogle Scholar
  110. Hoffman, L., Loeb, A.: Dynamics of triple black hole systems in hierarchically merging massive galaxies. MNRAS 377, 957–976 (2007)ADSCrossRefGoogle Scholar
  111. Hoyle, F., Fowler, W.A.: On the nature of strong radio sources. MNRAS 125, 169 (1963)ADSGoogle Scholar
  112. Hughes, S.A., Blandford, R.D.: Black hole mass and spin coevolution by mergers. ApJL 585, L101–L104 (2003)ADSCrossRefGoogle Scholar
  113. Hut, P., McMillan, S., Goodman, J., Mateo, M., Phinney, E.S., Pryor, C., Richer, H.B., Verbunt, F., Weinberg, M.: Binaries in globular clusters. PASP 104, 981–1034 (1992)ADSCrossRefGoogle Scholar
  114. Igumenshchev, I.V., Narayan, R., Abramowicz, M.A.: Three-dimensional magnetohydrodynamic simulations of radiatively inefficient accretion flows. ApJ 592, 1042–1059 (2003)ADSCrossRefGoogle Scholar
  115. Iocco, F., Bressan, A., Ripamonti, E., Schneider, R., Ferrara, A., Marigo, P.: Dark matter annihilation effects on the first stars. MNRAS 390, 1655–1669 (2008)ADSGoogle Scholar
  116. Islam, R.R., Taylor, J.E., Silk, J.: Massive black hole remnants of the first stars in galactic haloes. MNRAS 340, 647–656 (2003)ADSCrossRefGoogle Scholar
  117. Islam, R.R., Taylor, J.E., Silk, J.: Massive black hole remnants of the first stars - III. Observational signatures from the past. MNRAS 354, 629–640 (2004)Google Scholar
  118. Jenkins, A., Frenk, C.S., White, S.D.M., Colberg, J.M., Cole, S., Evrard, A.E., Couchman, H.M.P., Yoshida, N.: The mass function of dark matter haloes. MNRAS 321, 372–384 (2001)ADSCrossRefGoogle Scholar
  119. Jiang, L., Fan, X., Bian, F., Annis, J., Chiu, K., Jester, S., Lin, H., Lupton, R.H., Richards, G.T., Strauss, M.A., Malanushenko, V., Malanushenko, E., Schneider, D.P.: A survey of z ≈ 6 quasars in the sloan digital sky survey deep stripe. II. Discovery of six quasars at \({z}_{AB} \gtrsim 21\). AJ 138, 305–311 (2009)Google Scholar
  120. Jiang, L., Fan, X., Brandt, W.N., Carilli, C.L., Egami, E., Hines, D.C., Kurk, J.D., Richards, G.T., Shen, Y., Strauss, M.A., Vestergaard, M., Walter, F.: Dust-free quasars in the early Universe. Nature 464, 380–383 (2010)ADSCrossRefGoogle Scholar
  121. Jiang, L., Fan, X., Vestergaard, M., Kurk, J.D., Walter, F., Kelly, B.C., Strauss, M.A.: Gemini near-infrared spectroscopy of luminous z ≈ 6 quasars: chemical abundances, black hole masses, and Mg II absorption. AJ 134, 1150 (2007)ADSCrossRefGoogle Scholar
  122. Jimenez, R., Haiman, Z.: Significant primordial star formation at redshifts z   3 4. Nature 440, 501–504 (2006)ADSCrossRefGoogle Scholar
  123. Kaaret, P., Feng, H., Gorski, M.: A major x-ray outburst from an ultraluminous x-ray source in M82. ApJ 692, 653–658 (2009)ADSCrossRefGoogle Scholar
  124. Kaaret, P., Prestwich, A.H., Zezas, A., Murray, S.S., Kim, D.-W., Kilgard, R.E., Schlegel, E.M., Ward, M.J.: Chandra high-resolution camera observations of the luminous x-ray source in the starburst galaxy M82. MNRAS 321, L29–L32 (2001)ADSCrossRefGoogle Scholar
  125. Kang, H., Shapiro, P.R.: Radiative shocks and hydrogen molecules in pregalactic gas - The effects of postshock radiation. ApJ 386, 432–451 (1992)ADSCrossRefGoogle Scholar
  126. Kang, H., Shapiro, P.R., Fall, S.M., Rees, M.J.: Radiative shocks inside protogalaxies and the origin of globular clusters. ApJ 363, 488–498 (1990)ADSCrossRefGoogle Scholar
  127. Kashlinsky, A., Rees, M.J.: Formation of population III stars and pregalactic evolution. MNRAS 205, 955–971 (1983)ADSGoogle Scholar
  128. Kaspi, S., Smith, P.S., Netzer, H., Maoz, D., Jannuzi, B.T., Giveon, U.: Reverberation measurements for 17 quasars and the size-mass-luminosity relations in active galactic nuclei. ApJ 533, 631–649 (2000)ADSCrossRefGoogle Scholar
  129. Kawai, N., Kosugi, G., Aoki, K., Yamada, T., Totani, T., Ohta, K., Iye, M., Hattori, T., Aoki, W., Furusawa, H., Hurley, K., Kawabata, K.S., Kobayashi, N., Komiyama, Y., Mizumoto, Y., Nomoto, K., Noumaru, J., Ogasawara, R., Sato, R., Sekiguchi, K., Shirasaki, Y., Suzuki, M., Takata, T., Tamagawa, T., Terada, H., Watanabe, J., Yatsu, Y., Yoshida, A.: An optical spectrum of the afterglow of a γ-ray burst at a redshift of z = 6.295. Nature 440, 184–186 (2006)ADSCrossRefGoogle Scholar
  130. Keeton, C.R., Kuhlen, M., Haiman, Z.: Gravitational lensing magnification without multiple imaging. ApJ 621, 559–573 (2005)ADSCrossRefGoogle Scholar
  131. Kereš, D., Katz, N., Weinberg, D.H., Davé, R.: How do galaxies get their gas? MNRAS 363, 2–28 (2005)ADSCrossRefGoogle Scholar
  132. King, A.R., Davies, M.B., Ward, M.J., Fabbiano, G., Elvis, M.: Ultraluminous x-ray sources in external galaxies. ApJL 552, L109–L112 (2001)ADSCrossRefGoogle Scholar
  133. Kitayama, T., Ikeuchi, S.: Formation of subgalactic clouds under ultraviolet background radiation. ApJ 529, 615–634 (2000)ADSCrossRefGoogle Scholar
  134. Kochanek, C.S.: Gravitational lenses and NGST. In: Smith, E.P., Koratkar, A. (eds.) Science With The NGST, vol. 133 of Astronomical Society of the Pacific Conference Series, p. 96 (1998)Google Scholar
  135. Kocsis, B., Sesana, A.: Gas-driven massive black hole binaries: signatures in the nHz gravitational wave background. MNRAS 411, 1467–1479 (2011)ADSCrossRefGoogle Scholar
  136. Kollmeier, J.A., Onken, C.A., Kochanek, C.S., Gould, A., Weinberg, D.H., Dietrich, M., Cool, R., Dey, A., Eisenstein, D.J., Jannuzi, B.T., Le Floc’h, E., Stern, D.: Black hole masses and eddington ratios at 0. 3 < z < 4. ApJ 648, 128–139 (2006)ADSCrossRefGoogle Scholar
  137. Komatsu, E., Smith, K.M., Dunkley, J., Bennett, C.L., Gold, B., Hinshaw, G., Jarosik, N., Larson, D., Nolta, M.R., Page, L., Spergel, D.N., Halpern, M., Hill, R.S., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Tucker, G.S., Weiland, J.L., Wollack, E., Wright, E.L.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. ApJS 192, 18 (2011)Google Scholar
  138. Koushiappas, S.M., Bullock, J.S., Dekel, A.: Massive black hole seeds from low angular momentum material. MNRAS 354, 292–304 (2004)ADSCrossRefGoogle Scholar
  139. Kurk, J.D., Walter, F., Fan, X., Jiang, L., Jester, S., Rix, H.-W., Riechers, D.A.: Near-infrared spectroscopy of SDSS J0303 - 0019: A low-luminosity, high-eddington-ratio quasar at z   6. ApJ 702, 833–837 (2009)ADSCrossRefGoogle Scholar
  140. Kurk, J.D., Walter, F., Fan, X., Jiang, L., Riechers, D.A., Rix, H.-W., Pentericci, L., Strauss, M.A., Carilli, C., Wagner, S.: Black hole masses and enrichment of z   6 SDSS quasars. ApJ 669, 32–44 (2007)ADSCrossRefGoogle Scholar
  141. Lamb, D.Q., Reichart, D.E.: Gamma-ray bursts as a probe of the very high redshift Universe. ApJ 536, 1–18 (2000)ADSCrossRefGoogle Scholar
  142. Lang, R.N., Hughes, S.A.: Measuring coalescing massive binary black holes with gravitational waves: the impact of spin-induced precession. Phys. Rev. D 74(12), 122001 (2006)ADSCrossRefGoogle Scholar
  143. Latif, M.A., Schleicher, D.R.G., Spaans, M., Zaroubi, S.: Lyman α emission from the first galaxies: signatures of accretion and infall in the presence of line trapping. MNRAS 413, L33–L37 (2011)ADSGoogle Scholar
  144. Latif, M.A., Zaroubi, S., Spaans, M.: The impact of Lyman α trapping on the formation of primordial objects. MNRAS 411, 1659–1670 (2011)ADSCrossRefGoogle Scholar
  145. Lauer, T.R., Faber, S.M., Richstone, D., Gebhardt, K., Tremaine, S., Postman, M., Dressler, A., Aller, M.C., Filippenko, A.V., Green, R., Ho, L.C., Kormendy, J., Magorrian, J., Pinkney, J.: The masses of nuclear black holes in luminous elliptical galaxies and implications for the space density of the most massive black holes. ApJ 662, 808–834 (2007)ADSCrossRefGoogle Scholar
  146. Lawrence, A., Warren, S.J., Almaini, O., Edge, A.C., Hambly, N.C., Jameson, R.F., Lucas, P., Casali, M., Adamson, A., Dye, S., Emerson, J.P., Foucaud, S., Hewett, P., Hirst, P., Hodgkin, S.T., Irwin, M.J., Lodieu, N., McMahon, R.G., Simpson, C., Smail, I., Mortlock, D., Folger, M.: The UKIRT Infrared Deep Sky Survey (UKIDSS). MNRAS 379, 1599–1617 (2007)ADSCrossRefGoogle Scholar
  147. Lee, H.M.: Dynamical effects of successive mergers on the evolution of spherical stellar systems. ApJ 319, 801–818 (1987)ADSCrossRefGoogle Scholar
  148. Lepp, S., Shull, J.M.: Molecules in the early universe. ApJ 280, 465–469 (1984)ADSCrossRefGoogle Scholar
  149. Li, Y., Haiman, Z., M.-M. Mac Low. Correlations between central massive objects and their host galaxies: from bulgeless spirals to ellipticals. ApJ 663, 61–70 (2007)ADSCrossRefGoogle Scholar
  150. Li, Y., Hernquist, L., Robertson, B., Cox, T.J., Hopkins, P.F., Springel, V., Gao, L., Di Matteo, T., Zentner, A.R., Jenkins, A., Yoshida, N.: Formation of z 6 quasars from hierarchical galaxy mergers. ApJ 665, 187–208 (2007)ADSCrossRefGoogle Scholar
  151. Lippai, Z., Frei, Z., Haiman, Z.: Prompt shocks in the gas disk around a recoiling supermassive black hole binary. ApJL 676, L5–L8 (2008)ADSCrossRefGoogle Scholar
  152. Lodato, G., Natarajan, P.: Supermassive black hole formation during the assembly of pre-galactic discs. MNRAS 371, 1813–1823 (2006)ADSCrossRefGoogle Scholar
  153. Lukić, Z., Heitmann, K., Habib, S., Bashinsky, S., Ricker, P.M.: The halo mass function: high-redshift evolution and universality. ApJ 671, 1160–1181 (2007)ADSCrossRefGoogle Scholar
  154. Machacek, M.E., Bryan, G.L., Abel, T.: Simulations of pregalactic structure formation with radiative feedback. ApJ 548, 509–521 (2001)ADSCrossRefGoogle Scholar
  155. Madau, P., Ferrara, A., Rees, M.J.: Early metal enrichment of the intergalactic medium by pregalactic outflows. ApJ 555, 92–105 (2001)ADSCrossRefGoogle Scholar
  156. Madau, P., Quataert, E.: The effect of gravitational-wave recoil on the demography of massive black holes. ApJL 606, L17–L20 (2004)ADSCrossRefGoogle Scholar
  157. Madau, P., Rees, M.J.: Massive black holes as Population III remnants. ApJL 551, L27–L30 (2001)ADSCrossRefGoogle Scholar
  158. Mahmood Khan, F., Just, A., Merritt, D.: Efficient merger of binary supermassive black holes in merging galaxies. ApJ 732, 89 (2011)ADSCrossRefGoogle Scholar
  159. Maio, U., Koopmans, L.V.E., Ciardi, B.: The impact of primordial supersonic flows on early structure formation, reionization and the lowest-mass dwarf galaxies. MNRAS 412, L40–L44 (2011)ADSGoogle Scholar
  160. Martini, P.: QSO lifetimes. In: Ho, L.C. (ed.) Coevolution of Black Holes and Galaxies. Carnegie Observatories Centennial Symposia, p.169. Cambridge University Press, as part of the Carnegie Observatories Astrophysics Series (2004) (ISBN: 0521824494)Google Scholar
  161. Martini, P., Weinberg, D.H.: Quasar clustering and the lifetime of quasars. ApJ 547, 12–26 (2001)ADSCrossRefGoogle Scholar
  162. Matsuda, T., Sat = o, H., Takeda, H.: Cooling of pre-galactic gas clouds by hydrogen molecule. Progr. Theor. Phys. 42, 219–233 (1969)Google Scholar
  163. McGreer, I.D., Becker, R.H., Helfand, D.J., White, R.L.: Discovery of a z = 6.1 radio-loud quasar in the NOAO deep wide field survey. ApJ 652, 157–162 (2006)ADSCrossRefGoogle Scholar
  164. McGreer, I.D., Hall, P.B., Fan, X., Bian, F., Inada, N., Oguri, M., Strauss, M.A., Schneider, D.P., Farnsworth, K.: SDSS J094604.90+183541.8: A gravitationally lensed quasar at z = 4.8. AJ 140, 370–378 (2010)ADSCrossRefGoogle Scholar
  165. McKee, C.F., Tan, J.C.: The formation of the first stars. II. Radiative feedback processes and implications for the initial mass function. ApJ 681, 771–797 (2008)Google Scholar
  166. McWilliams, S.T., Thorpe, J.I., Baker, J.G., Kelly, B.J.: Impact of mergers on LISA parameter estimation for nonspinning black hole binaries. Phys. Rev. D 81(6), 064014 (2010)ADSCrossRefGoogle Scholar
  167. Menou, K., Haiman, Z., Narayanan, V.K.: The merger history of supermassive black holes in galaxies. ApJ 558, 535–542 (2001)ADSCrossRefGoogle Scholar
  168. Merritt, D., M. Milosavljević. Massive black hole binary evolution. Living Rev. Relat. 8, 8 (2005)ADSGoogle Scholar
  169. Merritt, D., Poon, M.Y.: Chaotic loss cones and black hole fueling. ApJ 606, 788–798 (2004)ADSCrossRefGoogle Scholar
  170. Mesinger, A., Bryan, G.L., Haiman, Z.: Ultraviolet radiative feedback on high-redshift protogalaxies. ApJ 648, 835–851 (2006)ADSCrossRefGoogle Scholar
  171. Mesinger, A., Bryan, G.L., Haiman, Z.: Relic HII regions and radiative feedback at high redshifts. MNRAS 399, 1650–1662 (2009)ADSCrossRefGoogle Scholar
  172. Miller, M.C., Colbert, E.J.M.: Intermediate-mass black holes. Int. J. Modern Phys. D 13, 1–64 (2004)ADSzbMATHCrossRefGoogle Scholar
  173. Milosavljević, M., Bromm, V., Couch, S.M., Oh, S.P.: Accretion onto “Seed” black holes in the first galaxies. ApJ 698, 766–780 (2009)ADSCrossRefGoogle Scholar
  174. Milosavljević, M., Couch, S.M., Bromm, V.: Accretion onto intermediate-mass black holes in dense protogalactic clouds. ApJL 696, L146–L149 (2009)ADSCrossRefGoogle Scholar
  175. Miralda-Escudé, J., Kollmeier, J.A.: Star captures by quasar accretion disks: a possible explanation of the M-σ relation. ApJ 619, 30–40 (2005)ADSCrossRefGoogle Scholar
  176. Naoz, S., Noter, S., Barkana, R.: The first stars in the Universe. MNRAS 373, L98–L102 (2006)ADSGoogle Scholar
  177. Navarro, J.F., Frenk, C.S., White, S.D.M.: A universal density profile from hierarchical clustering. ApJ 490, 493 (1997)ADSCrossRefGoogle Scholar
  178. Navarro, J.F., Steinmetz, M.: The effects of a photoionizing ultraviolet background on the formation of disk galaxies. ApJ 478, 13 (1997)ADSCrossRefGoogle Scholar
  179. Netzer, H.: The largest black holes and the most luminous galaxies. ApJL 583, L5–L8 (2003)ADSCrossRefGoogle Scholar
  180. Noyola, E., Gebhardt, K., Bergmann, M.: Gemini and hubble space telescope evidence for an intermediate-mass black hole in ω centauri. ApJ 676, 1008–1015 (2008)ADSCrossRefGoogle Scholar
  181. Oh, S.P.: Reionization by Hard Photons. I. X-Rays from the First Star Clusters. ApJ 553, 499–512 (2001)Google Scholar
  182. Oh, S.P., Haiman, Z.: Second-generation objects in the Universe: radiative cooling and collapse of halos with virial temperatures above 104 K. ApJ 569, 558–572 (2002)ADSCrossRefGoogle Scholar
  183. Oh, S.P., Haiman, Z., Rees, M.J.: HE II recombination lines from the first luminous objects. ApJ 553, 73–77 (2001)ADSCrossRefGoogle Scholar
  184. O’Leary, R.M., Rasio, F.A., Fregeau, J.M., Ivanova, N., O’Shaughnessy, R.: Binary mergers and growth of black holes in dense star clusters. ApJ 637, 937–951 (2006)ADSCrossRefGoogle Scholar
  185. Omukai, K.: Primordial star formation under far-ultraviolet radiation. ApJ 546, 635–651 (2001)ADSCrossRefGoogle Scholar
  186. Omukai, K., Schneider, R., Haiman, Z.: Can supermassive black holes form in metal-enriched high-redshift protogalaxies? ApJ 686, 801–814 (2008)ADSCrossRefGoogle Scholar
  187. O’Shea, B.W., Norman, M.L.: Population III star formation in a ΛCDM Universe. I. The effect of formation redshift and environment on protostellar accretion rate. ApJ 654, 66–92 (2007)Google Scholar
  188. Ostriker, J.P.: Collisional dark matter and the origin of massive black holes. Phys. Rev. Lett. 84, 5258–5260 (2000)ADSCrossRefGoogle Scholar
  189. Ostriker, J.P., Gnedin, N.Y.: Reheating of the Universe and Population III. ApJL 472, L63+ (1996)Google Scholar
  190. Palla, F., Salpeter, E.E., Stahler, S.W.: Primordial star formation - The role of molecular hydrogen. ApJ 271, 632–641 (1983)ADSCrossRefGoogle Scholar
  191. Pelupessy, F.I., Di Matteo, T., Ciardi, B.: How rapidly do supermassive black hole “Seeds” grow at early times? ApJ 665, 107–119 (2007)ADSCrossRefGoogle Scholar
  192. Portegies Zwart, S.F., McMillan, S.L.W.: The runaway growth of intermediate-mass black holes in dense star clusters. ApJ 576, 899–907 (2002)ADSCrossRefGoogle Scholar
  193. Press, W.H., Schechter, P.: Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. ApJ 187, 425–438 (1974)ADSCrossRefGoogle Scholar
  194. Preto, M., Berentzen, I., Berczik, P., Spurzem, R.: Fast coalescence of massive black hole binaries from mergers of galactic nuclei: implications for low-frequency gravitational-wave astrophysics. ApJL 732, L26 + (2011)Google Scholar
  195. Prieto, J., Padoan, P., Jimenez, R., Infante, L.: Population III stars from turbulent fragmentation at redshift  11. ApJL 731, L38 + (2011)Google Scholar
  196. Proga, D., Begelman, M.C.: Accretion of low angular momentum material onto black holes: two-dimensional magnetohydrodynamic case. ApJ 592, 767–781 (2003)ADSCrossRefGoogle Scholar
  197. Quataert, E., Gruzinov, A.: Constraining the accretion tate onto Sagittarius A* using linear polarization. ApJ 545, 842–846 (2000)ADSCrossRefGoogle Scholar
  198. Quinlan, G.D., Shapiro, S.L.: The dynamical evolution of dense star clusters in galactic nuclei. ApJ 356, 483–500 (1990)ADSCrossRefGoogle Scholar
  199. Rasio, F.A., Freitag, M., Gürkan, M.A.: Formation of massive black holes in dense star clusters. In: Ho, L.C. (ed.) ‘Coevolution of Black Holes and Galaxies’, from the Carnegie Observatories Centennial Symposia, p. 138. Cambridge Press as part of the Carnegie Observatories Astrophysics Series (2004)Google Scholar
  200. Reed, D.S., Bower, R., Frenk, C.S., Jenkins, A., Theuns, T.: The halo mass function from the dark ages through the present day. MNRAS 374, 2–15 (2007)ADSCrossRefGoogle Scholar
  201. Rees, M.J.: Black hole models for active galactic nuclei. ARA&A 22, 471–506 (1984)ADSCrossRefGoogle Scholar
  202. Rees, M.J., Ostriker, J.P.: Cooling, dynamics and fragmentation of massive gas clouds - Clues to the masses and radii of galaxies and clusters. MNRAS 179, 541–559 (1977)ADSGoogle Scholar
  203. Regan, J.A., Haehnelt, M.G.: The formation of compact massive self-gravitating discs in metal-free haloes with virial temperatures of  13000–30000K. MNRAS 393, 858–871 (2009)ADSCrossRefGoogle Scholar
  204. Richards, G.T., Strauss, M.A., Pindor, B., Haiman, Z., Fan, X., Eisenstein, D., Schneider, D.P., Bahcall, N.A., Brinkmann, J., Brunner, R.: A snapshot survey for gravitational lenses among z\(\gtrsim \) = 4.0 quasars. I. The z\(\gtrsim \)5.7 sample. AJ 127, 1305–1312 (2004)Google Scholar
  205. Ripamonti, E., Iocco, F., Ferrara, A., Schneider, R., Bressan, A., Marigo, P.: First star formation with dark matter annihilation. MNRAS, page 883 (2010)Google Scholar
  206. Saijo, M., Baumgarte, T.W., Shapiro, S.L., Shibata, M.: Collapse of a rotating supermassive star to a supermassive black hole: post-newtonian simulations. ApJ 569, 349–361 (2002)ADSCrossRefGoogle Scholar
  207. Salvaterra, R., Della Valle, M., Campana, S., Chincarini, G., Covino, S., D’Avanzo, P., Fernández-Soto, A., Guidorzi, C., Mannucci, F., Margutti, R., Thöne, C.C., Antonelli, L.A., Barthelmy, S.D., de Pasquale, M., D’Elia, V., Fiore, F., Fugazza, D., Hunt, L.K., Maiorano, E., Marinoni, S., Marshall, F.E., Molinari, E., Nousek, J., Pian, E., Racusin, J.L., Stella, L., Amati, L., Andreuzzi, G., Cusumano, G., Fenimore, E.E., Ferrero, P., Giommi, P., Guetta, D., Holland, S.T., Hurley, K., Israel, G.L., Mao, J., Markwardt, C.B., Masetti, N., Pagani, C., Palazzi, E., Palmer, D.M., Piranomonte, S., Tagliaferri, G., Testa, V.: GRB090423 at a redshift of z 8.1. Nature 461, 1258–1260 (2009)ADSCrossRefGoogle Scholar
  208. Salviander, S., Shields, G.A., Gebhardt, K., Bernardi, M., Hyde, J.B.: In search of the largest velocity dispersion galaxies. ApJ 687, 828–834 (2008)ADSCrossRefGoogle Scholar
  209. Saslaw, W.C., Valtonen, M.J., Aarseth, S.J.: The gravitational slingshot and the structure of extragalactic radio sources. ApJ 190, 253–270 (1974)ADSCrossRefGoogle Scholar
  210. Schleicher, D.R.G., Spaans, M., Glover, S.C.O.: Black hole formation in primordial galaxies: chemical and radiative conditions. ApJL 712, L69–L72 (2010)ADSCrossRefGoogle Scholar
  211. Schleicher, D.R.G., Spaans, M., Klessen, R.S.: Probing high-redshift quasars with ALMA. I. Expected observables and potential number of sources. A&A 513, A7 + (2010)Google Scholar
  212. Sesana, A., Haardt, F., Madau, P., Volonteri, M.: Low-frequency gravitational radiation from coalescing massive black hole binaries in hierarchical cosmologies. ApJ 611, 623–632 (2004)ADSCrossRefGoogle Scholar
  213. Sesana, A., Haardt, F., Madau, P., Volonteri, M.: The gravitational wave signal from massive black hole binaries and its contribution to the LISA data stream. ApJ 623, 23–30 (2005)ADSCrossRefGoogle Scholar
  214. Sesana, A., Volonteri, M., Haardt, F.: The imprint of massive black hole formation models on the LISA data stream. MNRAS 377, 1711–1716 (2007)ADSCrossRefGoogle Scholar
  215. Sethi, S.K., Haiman, Z., Pandey, K.: Supermassive black hole formation at high redshifts through a primordial magnetic field. ApJ 721, 615 (2010)ADSCrossRefGoogle Scholar
  216. Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance. A&A 24, 337–355 (1973)Google Scholar
  217. Shang, C., Bryan, G.L., Haiman, Z.: Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures Tvir \(\gtrsim \) 104 K. MNRAS 402, 1249–1262 (2010)Google Scholar
  218. Shankar, F.: The demography of supermassive black holes: Growing monsters at the heart of galaxies. New Astron. Rev. 53, 57–77 (2009)ADSCrossRefGoogle Scholar
  219. Shankar, F., Bernardi, M., Haiman, Z.: The evolution of the M BH − σ relation inferred from the age distribution of local early-type galaxies and active galactic nuclei evolution. ApJ 694, 867–878 (2009)Google Scholar
  220. Shankar, F., Crocce, M., Miralda-Escudé, J., Fosalba, P., Weinberg, D.H.: On the radiative efficiencies, eddington ratios, and duty cycles of luminous high-redshift quasars. ApJ 718, 231–250 (2010)ADSCrossRefGoogle Scholar
  221. Shankar, F., Weinberg, D.H., Miralda-Escudé, J.: Self-consistent models of the AGN and black hole populations: duty cycles, accretion rates, and the mean radiative efficiency. ApJ 690, 20–41 (2009)ADSCrossRefGoogle Scholar
  222. Shankar, F., Weinberg, D.H., Shen, Y.: Constraints on black hole duty cycles and the black hole-halo relation from SDSS quasar clustering. MNRAS 406, 1959–1966 (2010)ADSGoogle Scholar
  223. Shapiro, P.R., Giroux, M.L., Babul, A.: Reionization in a cold dark matter universe: The feedback of galaxy formation on the intergalactic medium. ApJ 427, 25–50 (1994)ADSCrossRefGoogle Scholar
  224. Shapiro, P.R., Kang, H.: Hydrogen molecules and the radiative cooling of pregalactic shocks. ApJ 318, 32–65 (1987)ADSCrossRefGoogle Scholar
  225. Shapiro, S.L.: Formation of supermassive black holes: simulations in general relativity. In: Ho, L.C. (ed.) ‘Coevolution of Black Holes and Galaxies’, from the Carnegie Observatories Centennial Symposia, p. 103. Cambridge Press as part of the Carnegie Observatories Astrophysics Series (2004)Google Scholar
  226. Shapiro, S.L.: Spin, accretion, and the cosmological growth of supermassive black holes. ApJ 620, 59–68 (2005)ADSCrossRefGoogle Scholar
  227. Shapiro, S.L., Teukolsky, S.A.: Black holes, white dwarfs, and neutron stars. The physics of compact objects. Book: Research supported by the National Science Foundation, p. 663. Wiley-Interscience, New York (1983)Google Scholar
  228. Shaver, P.A., Wall, J.V., Kellermann, K.I., Jackson, C.A., Hawkins, M.R.S.: Decrease in the space density of quasars at high redshift. Nature 384, 439–441 (1996)ADSCrossRefGoogle Scholar
  229. Shen, Y., Strauss, M.A., Oguri, M., Hennawi, J.F., Fan, X., Richards, G.T., Hall, P.B., Gunn, J.E., Schneider, D.P., Szalay, A.S., Thakar, A.R., Vanden Berk, D.E., Anderson, S.F., Bahcall, N.A., Connolly, A.J., Knapp, G.R.: Clustering of high-redshift (z >  = 2.9) quasars from the sloan digital sky survey. AJ 133, 2222–2241 (2007)ADSCrossRefGoogle Scholar
  230. Sheth, R.K., Mo, H.J., Tormen, G.: Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. MNRAS 323, 1–12 (2001)ADSCrossRefGoogle Scholar
  231. Shibata, M., Shapiro, S.L.: Collapse of a rotating supermassive star to a supermassive black hole: fully relativistic simulations. ApJL 572, L39–L43 (2002)ADSCrossRefGoogle Scholar
  232. Shields, G.A., Gebhardt, K., Salviander, S., Wills, B.J., Xie, B., Brotherton, M.S., Yuan, J., Dietrich, M.: The black hole-bulge relationship in quasars. ApJ 583, 124–133 (2003)ADSCrossRefGoogle Scholar
  233. Shlosman, I., Begelman, M.C.: Evolution of self-gravitating accretion disks in active galactic nuclei. ApJ 341, 685–691 (1989)ADSCrossRefGoogle Scholar
  234. Shu, F.H.: Self-similar collapse of isothermal spheres and star formation. ApJ 214, 488–497 (1977)ADSCrossRefGoogle Scholar
  235. Sijacki, D., Springel, V., Haehnelt, M.G.: Growing the first bright quasars in cosmological simulations of structure formation. MNRAS 400, 100–122 (2009)ADSCrossRefGoogle Scholar
  236. Silk, J., Rees, M.J.: Quasars and galaxy formation. A&A 331, L1–L4 (1998)ADSGoogle Scholar
  237. Silk, J., Spaans, M.: Molecular lines as diagnostics of high-redshift objects. ApJL 488, L79 + (1997)Google Scholar
  238. Silverman, J.D., Green, P.J., Barkhouse, W.A., Kim, D.-W., Kim, M., Wilkes, B.J., Cameron, R.A., Hasinger, G., Jannuzi, B.T., Smith, M.G., Smith, P.S., Tananbaum, H.: The luminosity function of x-ray-selected active galactic nuclei: evolution of supermassive black holes at high redshift. ApJ 679, 118–139 (2008)ADSCrossRefGoogle Scholar
  239. Small, T.A., Blandford, R.D.: Quasar evolution and the growth of black holes. MNRAS 259, 725–737 (1992)ADSGoogle Scholar
  240. Spaans, M., Silk, J.: Pregalactic black hole formation with an atomic hydrogen equation of state. ApJ 652, 902–906 (2006)ADSCrossRefGoogle Scholar
  241. Spitzer, L. Jr.: Equipartition and the formation of compact nuclei in spherical stellar systems. ApJL 158, L139 + (1969)Google Scholar
  242. Spolyar, D., Bodenheimer, P., Freese, K., Gondolo, P.: Dark stars: a new look at the first stars in the Universe. ApJ 705, 1031–1042 (2009)ADSCrossRefGoogle Scholar
  243. Spolyar, D., Freese, K., Gondolo, P.: Dark matter and the first stars: A new phase of stellar evolution. Phys. Rev. Lett. 100(5), 051101 (2008)ADSCrossRefGoogle Scholar
  244. Stacy, A., Bromm, V., Loeb, A.: Effect of streaming motion of baryons relative to dark matter on the formation of the first stars. ApJL 730, L1 + (2011)Google Scholar
  245. Stacy, A., Bromm, V., Loeb, A.: Rotation speed of the first stars. MNRAS 413, 543–553 (2011)ADSCrossRefGoogle Scholar
  246. Stacy, A., Greif, T.H., Bromm, V.: The first stars: formation of binaries and small multiple systems. MNRAS 403, 45–60 (2010)ADSCrossRefGoogle Scholar
  247. Stone, J.M., Pringle, J.E.: Magnetohydrodynamical non-radiative accretion flows in two dimensions. MNRAS 322, 461–472 (2001)ADSCrossRefGoogle Scholar
  248. Stone, J.M., Pringle, J.E., Begelman, M.C.: Hydrodynamical non-radiative accretion flows in two dimensions. MNRAS 310, 1002–1016 (1999)ADSCrossRefGoogle Scholar
  249. Tan, J.C., McKee, C.F.: The formation of the first stars. I. Mass infall rates, accretion disk structure, and protostellar evolution. ApJ 603, 383–400 (2004)ADSCrossRefGoogle Scholar
  250. Tanaka, T., Haiman, Z.: The assembly of supermassive black holes at high redshifts. ApJ 696, 1798–1822 (2009)ADSCrossRefGoogle Scholar
  251. Tanvir, N.R., Fox, D.B., Levan, A.J., Berger, E., Wiersema, K., Fynbo, J.P.U., Cucchiara, A., Krühler, T., Gehrels, N., Bloom, J.S., Greiner, J., Evans, P.A., Rol, E., Olivares, F., Hjorth, J., Jakobsson, P., Farihi, J., Willingale, R., Starling, R.L.C., Cenko, S.B., Perley, D., Maund, J.R., Duke, J., Wijers, R.A.M.J., Adamson, A.J., Allan, A., Bremer, M.N., Burrows, D.N., Castro-Tirado, A.J., Cavanagh, B., de Ugarte Postigo, A., Dopita, M.A., Fatkhullin, T.A., Fruchter, A.S., Foley, R.J., Gorosabel, J., Kennea, J., Kerr, T., Klose, S., Krimm, H.A., Komarova, V.N., Kulkarni, S.R., Moskvitin, A.S., Mundell, C.G., Naylor, T., Page, K., Penprase, B.E., Perri, M., Podsiadlowski, P., Roth, K., Rutledge, R.E., Sakamoto, T., Schady, P., Schmidt, B.P., Soderberg, A.M., Sollerman, J., Stephens, A.W., Stratta, G., Ukwatta, T.N., Watson, D., Westra, E., Wold, T., Wolf, C.: A γ-ray burst at a redshift of z 8.2. Nature 461, 1254–1257 (2009)ADSCrossRefGoogle Scholar
  252. Taoso, M., Bertone, G., Meynet, G., Ekström, S.: Dark matter annihilations in Population III stars. Phys. Rev. D 78(12), 123510 (2008)ADSCrossRefGoogle Scholar
  253. Tegmark, M., Silk, J., Rees, M.J., Blanchard, A., Abel, T., Palla, F.: How small were the first cosmological objects? ApJ 474, 1 (1997)ADSCrossRefGoogle Scholar
  254. Thoul, A.A., Weinberg, D.H.: Hydrodynamic simulations of galaxy formation. II. Photoionization and the formation of low-mass galaxies. ApJ 465, 608 (1996)Google Scholar
  255. Tseliakhovich, D., Barkana, R., Hirata, C.: Suppression and spatial variation of early galaxies and minihalos. ArXiv e-prints (2010)Google Scholar
  256. Tseliakhovich, D., Hirata, C.: Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82(8), 083520 (2010)ADSCrossRefGoogle Scholar
  257. Tumlinson, J., Giroux, M.L., Shull, J.M.: Probing the first stars with hydrogen and helium recombination emission. ApJL 550, L1–L5 (2001)ADSCrossRefGoogle Scholar
  258. Turk, M.J., Abel, T., O’Shea, B.: The formation of Population III binaries from cosmological initial conditions. Science 325, 601 (2009)ADSCrossRefGoogle Scholar
  259. Turner, E.L.: Quasars and galaxy formation. I - The Z greater than 4 objects. AJ 101, 5–17 (1991)ADSCrossRefGoogle Scholar
  260. Turner, N.J., Blaes, O.M., Socrates, A., Begelman, M.C., Davis, S.W.: The effects of photon bubble instability in radiation-dominated accretion disks. ApJ 624, 267–288 (2005)ADSCrossRefGoogle Scholar
  261. Umeda, H., Yoshida, N., Nomoto, K., Tsuruta, S., Sasaki, M., Ohkubo, T.: Early black hole formation by accretion of gas and dark matter. Jo Cosmol. Astro Part. Phys. 8, 24 (2009)ADSCrossRefGoogle Scholar
  262. van deer Marel, R. P.: Intermediate-mass black holes in the universe: a review of formation theories and observational constraints. In: Ho, L.C. (ed.) ‘Coevolution of Black Holes and Galaxies’, from the Carnegie Observatories Centennial Symposia, p. 37. Cambridge Press as part of the Carnegie Observatories Astrophysics Series (2004)Google Scholar
  263. van der Marel, R.P., Gerssen, J., Guhathakurta, P., Peterson, R.C., Gebhardt, K.: Hubble space telescope evidence for an intermediate-mass black hole in the globular cluster M15. I. STIS spectroscopy and WFPC2 photometry. AJ 124, 3255–3269 (2002)ADSCrossRefGoogle Scholar
  264. Vanden Berk, D.E., Richards, G.T., Bauer, A., Strauss, M.A., Schneider, D.P., Heckman, T.M., York, D.G., Hall, P.B., Fan, X., Knapp, G.R., Anderson, S.F., Annis, J., Bahcall, N.A., Bernardi, M., Briggs, J.W., Brinkmann, J., Brunner, R., Burles, S., Carey, L., Castander, F.J., Connolly, A.J., Crocker, J.H., Csabai, I., Doi, M., Finkbeiner, D., Friedman, S., Frieman, J.A., Fukugita, M., Gunn, J.E., Hennessy, G.S., Ivezić, Ž., Kent, S., Kunszt, P.Z., Lamb, D.Q., Leger, R.F., Long, D.C., Loveday, J., Lupton, R.H., Meiksin, A., Merelli, A., Munn, J.A., Newberg, H.J., Newcomb, M., Nichol, R.C., Owen, R., Pier, J.R., Pope, A., Rockosi, C.M., Schlegel, D.J., Siegmund, W.A., Smee, S., Snir, Y., Stoughton, C., Stubbs, C., SubbaRao, M., Szalay, A.S., Szokoly, G.P., Tremonti, C., Uomoto, A., Waddell, P., Yanny, B., Zheng, W.: Composite quasar spectra from the sloan digital sky survey. AJ 122, 549–564 (2001)ADSCrossRefGoogle Scholar
  265. Vecchio, A.: LISA observations of rapidly spinning massive black hole binary systems. Phys. Rev. D 70(4), 042001 (2004)MathSciNetADSCrossRefGoogle Scholar
  266. Vestergaard, M.: Determining central black hole masses in distant active galaxies. ApJ 571, 733–752 (2002)ADSCrossRefGoogle Scholar
  267. Vestergaard, M.: Early growth and efficient accretion of massive black holes at high redshift. ApJ 601, 676–691 (2004)ADSCrossRefGoogle Scholar
  268. Vestergaard, M., Fan, X., Tremonti, C.A., Osmer, P.S., Richards, G.T.: Mass functions of the active black holes in distant quasars from the sloan digital sky survey data release 3. ApJL 674, L1–L4 (2008)ADSCrossRefGoogle Scholar
  269. Vestergaard, M., Osmer, P.S.: Mass functions of the active black holes in distant quasars from the large bright quasar survey, the bright quasar survey, and the color-selected sample of the SDSS fall equatorial stripe. ApJ 699, 800–816 (2009)ADSCrossRefGoogle Scholar
  270. Vishniac, E.T.: A necessary condition for equilibrium in stellar systems with a continuous mass spectrum. ApJ 223, 986–990 (1978)ADSCrossRefGoogle Scholar
  271. Volonteri, M.: Formation of supermassive black holes. Astron. Astrophys. Rev. 18, 279–315 (2010)ADSCrossRefGoogle Scholar
  272. Volonteri, M., Haardt, F., Madau, P.: The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. ApJ 582, 559–573 (2003)ADSCrossRefGoogle Scholar
  273. Volonteri, M., Lodato, G., Natarajan, P.: The evolution of massive black hole seeds. MNRAS 383, 1079–1088 (2008)ADSCrossRefGoogle Scholar
  274. Volonteri, M., Natarajan, P.: Journey to the M BH − σ relation: the fate of low-mass black holes in the Universe. MNRAS 400, 1911–1918 (2009)Google Scholar
  275. Volonteri, M., Rees, M.J.: Rapid growth of high-redshift black holes. ApJ 633, 624–629 (2005)ADSCrossRefGoogle Scholar
  276. Volonteri, M., Rees, M.J.: Quasars at z = 6: The survival of the fittest. ApJ 650, 669–678 (2006)ADSCrossRefGoogle Scholar
  277. Wagoner, R.V.: Physics of massive objects. ARA&A 7, 553 (1969)ADSCrossRefGoogle Scholar
  278. Walter, F., Bertoldi, F., Carilli, C., Cox, P., Lo, K.Y., Neri, R., Fan, X., Omont, A., Strauss, M.A., Menten, K.M.: Molecular gas in the host galaxy of a quasar at redshift z = 6.42. Nature 424, 406–408 (2003)ADSCrossRefGoogle Scholar
  279. Wang, R., Carilli, C.L., Neri, R., Riechers, D.A., Wagg, J., Walter, F., Bertoldi, F., Menten, K.M., Omont, A., Cox, P., Fan, X.: Molecular gas in z ≈ 6 quasar host galaxies. ApJ 714, 699–712 (2010)ADSCrossRefGoogle Scholar
  280. Wang, R., Wagg, J., Carilli, C.L., Walter, F., Riechers, D.A., Willott, C., Bertoldi, F., Omont, A., Beelen, A., Cox, P., Strauss, M.A., Bergeron, J., Forveille, T., Menten, K.M., Fan, X.: CO (2-1) line emission in redshift 6 quasar host galaxies. ApJ 739, 34 (2011)ADSCrossRefGoogle Scholar
  281. Wasserburg, G.J., Qian, Y.-Z.: A model of metallicity evolution in the early Universe. ApJL 538, L99–L102 (2000)ADSCrossRefGoogle Scholar
  282. White, S.D.M., Rees, M.J.: Core condensation in heavy halos - A two-stage theory for galaxy formation and clustering. MNRAS 183, 341–358 (1978)ADSGoogle Scholar
  283. Willott, C.J., Albert, L., Arzoumanian, D., Bergeron, J., Crampton, D., Delorme, P., Hutchings, J.B., Omont, A., Reylé, C., Schade, D.: Eddington-limited accretion and the black hole mass function at redshift 6. AJ 140, 546–560 (2010)ADSCrossRefGoogle Scholar
  284. Willott, C.J., Delorme, P., Reylé, C., Albert, L., Bergeron, J., Crampton, D., Delfosse, X., Forveille, T., Hutchings, J.B., McLure, R.J., Omont, A., Schade, D.: The canada-france high-z quasar survey: nine new quasars and the luminosity function at redshift 6. AJ 139, 906–918 (2010)ADSCrossRefGoogle Scholar
  285. Willott, C.J., McLure, R.J., Jarvis, M.J.: A \(3\times 1{0}^{9}\mathrm{{M}_{\odot }}\) black hole in the quasar SDSS J1148 + 5251 at z = 6.41. ApJL 587, L15–L18 (2003)Google Scholar
  286. Willott, C.J., Percival, W.J., McLure, R.J., Crampton, D., Hutchings, J.B., Jarvis, M.J., Sawicki, M., Simard, L.: Imaging of SDSS z > 6 quasar fields: gravitational lensing, companion galaxies, and the host dark matter halos. ApJ 626, 657–665 (2005)ADSCrossRefGoogle Scholar
  287. Wise, J.H., Abel, T.: Resolving the formation of protogalaxies. III. Feedback from the first stars. ApJ 685, 40–56 (2008)Google Scholar
  288. Wise, J.H., Turk, M.J., Abel, T.: Resolving the formation of protogalaxies. II. Central gravitational collapse. ApJ 682, 745–757 (2008)Google Scholar
  289. Wolcott-Green, J., Bryan, G.L., Haiman, Z.: Photodissociation of H 2 in protogalaxies: self-shielding in 3D simulations. MNRAS 418, 838 (2011)Google Scholar
  290. Woosley, S.E.: Gamma-ray bursts from stellar mass accretion disks around black holes. ApJ 405, 273–277 (1993)ADSCrossRefGoogle Scholar
  291. Wyithe, J.S.B.: The shallow slope of the z  6 quasar luminosity function: limits from the lack of multiple-image gravitational lenses. MNRAS 351, 1266–1276 (2004)ADSCrossRefGoogle Scholar
  292. Wyithe, J.S.B., Loeb, A.: Gravitational lensing of the sloan digital sky survey high-redshift quasars. ApJ 577, 57–68 (2002)ADSCrossRefGoogle Scholar
  293. Wyithe, J.S.B., Loeb, A.: Magnification of light from many distant quasars by gravitational lenses. Nature 417, 923–925 (2002)ADSCrossRefGoogle Scholar
  294. Wyithe, J.S.B., Loeb, A.: Low-frequency gravitational waves from massive black hole binaries: predictions for LISA and pulsar timing arrays. ApJ 590, 691–706 (2003)ADSCrossRefGoogle Scholar
  295. Wyithe, J.S.B., Loeb, A.: Self-regulated growth of supermassive black holes in galaxies as the origin of the optical and x-ray luminosity functions of quasars. ApJ 595, 614–623 (2003)ADSCrossRefGoogle Scholar
  296. Yoo, J., Miralda-Escudé, J.: Formation of the black holes in the highest redshift quasars. ApJL 614, L25–L28 (2004)ADSCrossRefGoogle Scholar
  297. Yoon, S.-C., Iocco, F., Akiyama, S.: Evolution of the first stars with dark matter burning. ApJL 688, L1–L4 (2008)ADSCrossRefGoogle Scholar
  298. Yoshida, N., Abel, T., Hernquist, L., Sugiyama, N.: Simulations of early structure formation: primordial gas clouds. ApJ 592, 645–663 (2003)ADSCrossRefGoogle Scholar
  299. Yoshida, N., Omukai, K., Hernquist, L.: Protostar formation in the early Universe. Science 321, 669 (2008)ADSCrossRefGoogle Scholar
  300. Yoshida, N., Sokasian, A., Hernquist, L., Springel, V.: Early structure formation and reionization in a warm dark matter cosmology. ApJL 591, L1–L4 (2003)ADSCrossRefGoogle Scholar
  301. Yu, Q.: Evolution of massive binary black holes. MNRAS 331, 935–958 (2002)ADSCrossRefGoogle Scholar
  302. Yu, Q., Tremaine, S.: Observational constraints on growth of massive black holes. MNRAS 335, 965–976 (2002)ADSCrossRefGoogle Scholar
  303. Yunes, N., Kocsis, B., Loeb, A., Haiman, Z.: Imprint of accretion disk-induced migration on gravitational waves from extreme mass ratio inspirals. Phys Rev Lett 107, 1103 (2011)ADSCrossRefGoogle Scholar
  304. Zeimann, G.R., White, R.L., Becker, R.H., Hodge, J.A., Stanford, S.A., Richards, G.T.: Discovery of a radio-selected z   6 quasar. ApJ 736, 57 (2011)ADSCrossRefGoogle Scholar
  305. Zhang, J., Fakhouri, O., Ma, C.-P.: How to grow a healthy merger tree. MNRAS 389, 1521–1538 (2008)ADSCrossRefGoogle Scholar
  306. Zhao, H., Haehnelt, M.G., Rees, M.J.: Feeding black holes at galactic centres by capture from isothermal cusps. New Astron. 7, 385–394 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of AstronomyColumbia UniversityNew YorkUSA

Personalised recommendations