Advertisement

The Epoch of Reionization

  • Saleem Zaroubi
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 396)

Abstract

The Universe’s dark ages end with the formation of the first generation of galaxies. These objects start emitting ultraviolet radiation that carves out ionized regions around them. After a sufficient number of ionizing sources have formed, the ionized fraction of the gas in the Universe rapidly increases until hydrogen becomes fully ionized. This period, during which the cosmic gas went from neutral to ionized, is known as the Universe’s Epoch of Reionization. The Epoch of Reionization is related to many fundamental questions in cosmology, such as properties of the first galaxies, physics of (mini-)quasars, formation of very metal-poor stars and a slew of other important research topics in astrophysics. Hence uncovering it will have far reaching implications on the study of structure formation in the early Universe. This chapter reviews the current observational evidence for the occurrence of this epoch, its key theoretical aspects and main characteristics, and finally the various observational probes that promise to uncover it. A special emphasis is put on the redshifted 21 cm probe, the various experiments that are currently being either built or designed, and what we can learn from them about the Epoch of Reionization.

Keywords

Optical Depth Brightness Temperature Cosmic Microwave Background High Redshift Radio Frequency Interference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I would like to thank Geraint Harker, Stephen Rafter and Rajat M. Thomas for careful reading of the manuscript. Many of the results shown here have been obtained in collaboration with the members of the LOFAR EoR project whose contribution I would like to acknowledge. I would like also thank the editors of this book for giving me the opportunity to write this chapter.

References

  1. Abel, T., Bryan, G.L., Norman, M.L.: The formation and fragmentation of primordial molecular clouds. ApJ 540, 39–44 (2000)ADSGoogle Scholar
  2. Abel, T. Bryan, G.L. Norman, M.L.: The formation of the first star in the Universe. Science 295, 93–98 (2002)ADSGoogle Scholar
  3. Adshead, P.J., Furlanetto, S.R.: Reionization and the large-scale 21-cm cosmic microwave background cross-correlation. MNRAS 384, 291–304 (2008)ADSGoogle Scholar
  4. Aghanim, N., Majumdar, S., Silk, J.: Secondary anisotropies of the CMB. Rep. Progr. Phys. 71(6), 066902– + (2008)Google Scholar
  5. Ali, S.S., Bharadwaj, S., Chengalur, J.N.: Foregrounds for redshifted 21-cm studies of reionization: Giant Meter Wave Radio Telescope 153-MHz observations. MNRAS 385, 2166–2174 (2008)ADSGoogle Scholar
  6. Allison A.C., Dalgarno A.: Spin change in collisions of hydrogen atoms. ApJ 158, 423–425 (1969)ADSGoogle Scholar
  7. Alvarez, M.A., Komatsu, E., Doré, O., Shapiro, P.R.: The cosmic reionization history as revealed by the cosmic microwave background doppler-21 cm correlation. ApJ 647, 840–852 (2006)ADSGoogle Scholar
  8. Baek, S., Di Matteo, P., Semelin, B., Combes, F., Revaz, Y.: The simulated 21 cm signal during the epoch of reionization: full modeling of the Ly-α pumping. A&A 495, 389–405 (2009)ADSGoogle Scholar
  9. Barkana R., Loeb, A.: In the beginning: the first sources of light and the reionization of the universe. PhysRep 349, 125–238 (2001)ADSGoogle Scholar
  10. Barkana, R., Loeb, A.: A method for separating the physics from the astrophysics of high-redshift 21 centimeter fluctuations. ApJL 624, L65–L68 (2005)ADSGoogle Scholar
  11. Bechtold, J.: Quasar absorption lines. In: Pérez-Fournon, I., Balcells, M., Moreno-Insertis, F., Sánchez, F. (eds.) Galaxies at High Redshift, pp. 131–184 (2003)Google Scholar
  12. Benson, A.J., Sugiyama, N., Nusser, A., Lacey, C.G.: The epoch of reionization. MNRAS 369, 1055–1080 (2006)ADSGoogle Scholar
  13. Bernardi, G., de Bruyn, A.G., Brentjens, M.A., Ciardi, B., Harker, G., Jelić, V., Koopmans, L.V.E., Labropoulos, P., Offringa, A., Pandey, V.N., Schaye, J., Thomas, R.M., Yatawatta, S., Zaroubi S.: Foregrounds for observations of the cosmological 21 cm line. I. First Westerbork measurements of Galactic emission at 150 MHz in a low latitude field. A&A 500, 965–979 (2009)ADSGoogle Scholar
  14. Bernardi, G., de Bruyn, A.G., Harker, G., Brentjens, M.A., Ciardi, B., Jelić, V., Koopmans, L.V.E., Labropoulos, P., Offringa, A., Pandey, V.N., Schaye, J., Thomas, R.M., Yatawatta, S., Zaroubi S.: Foregrounds for observations of the cosmological 21 cm line. II. Westerbork observations of the fields around 3C 196 and the North Celestial Pole. A&A 522, A67 + (2010)Google Scholar
  15. Bharadwaj S., Ali, S.S.: The cosmic microwave background radiation fluctuations from HI perturbations prior to reionization. MNRAS 352, 142–146 (2004)ADSGoogle Scholar
  16. Bi, H.G., Boerner, G., Chu, Y.: An alternative model for the Ly-alpha absorption forest. A&A 266, 1–5 (1992)ADSGoogle Scholar
  17. Bolton, J.S., Becker, G.D., Wyithe, J.S.B., Haehnelt, M.G., Sargent, W.L.W.: A first direct measurement of the intergalactic medium temperature around a quasar at z = 6. MNRAS 771 (2010)Google Scholar
  18. Bolton, J.S., Haehnelt, M.G.: The observed ionization rate of the intergalactic medium and the ionizing emissivity at z ¿ = 5: evidence for a photon-starved and extended epoch of reionization. MNRAS 382, 325–341 (2007)ADSGoogle Scholar
  19. Bolton, J.S., Haehnelt, M.G., Viel, M., Springel, V.: The Lyman α forest opacity and the metagalactic hydrogen ionization rate at z  2-4. MNRAS 357, 1178–1188 (2005)ADSGoogle Scholar
  20. Bolton, J.S., Haehnelt, M.G., Warren, S.J., Hewett, P.C., Mortlock, D.J., Venemans, B.P., McMahon, R.G., Simpson C.: How neutral is the intergalactic medium surrounding the redshift z  = 7.085 quasar ULAS J1120 + 0641?. MNRAS 416, L70–L74 (2011)ADSGoogle Scholar
  21. Bond J.R., Efstathiou G.: Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter. ApJL 285, L45–L48 (1984)ADSGoogle Scholar
  22. Bouwens, R.J., Illingworth, G.D., Labbe, I., Oesch, P.A., Trenti, M., Carollo, C.M., van Dokkum, P.G., Franx, M., Stiavelli, M., González, V., Magee, D., Bradley, L.: A candidate redshift z 10 galaxy and rapid changes in that population at an age of 500Myr. Nature 469, 504–507 (2011)ADSGoogle Scholar
  23. Bouwens, R.J., Illingworth, G.D., Oesch, P.A., Stiavelli, M., van Dokkum, P., Trenti, M., Magee, D., Labbé, I., Franx, M., Carollo, C.M., Gonzalez V.: Discovery of z   8 galaxies in the Hubble Ultra Deep Field from Ultra-Deep WFC3/IR observations. ApJL 709, L133–L137 (2010)ADSGoogle Scholar
  24. Bouwens, R.J., Illingworth, G.D., Thompson, R.I., Franx, M.: Constraints on z 10 galaxies from the Deepest Hubble Space Telescope NICMOS fields. ApJL 624, L5–L8 (2005)ADSGoogle Scholar
  25. Bowman, J.D., Morales, M.F., Hewitt, J.N.: The sensitivity of first-generation epoch of reionization observatories and their potential for differentiating theoretical power spectra. ApJ 638, 20–26 (2006)ADSGoogle Scholar
  26. Bowman, J.D., Morales, M.F., Hewitt, J.N.: Foreground contamination in interferometric measurements of the redshifted 21 cm power spectrum. ApJ 695, 183–199 (2009)ADSGoogle Scholar
  27. Bowman, J.D., Rogers, A.E.E.: A lower limit of \(\Delta z > 0.06\) for the duration of the reionization epoch. Nature 468, 796–798 (2010)Google Scholar
  28. Bowman, J.D., Rogers, A.E.E., Hewitt, J.N.: Toward empirical constraints on the global redshifted 21 cm brightness temperature during the epoch of reionization. ApJ 676, 1–9 (2008)ADSGoogle Scholar
  29. Bromm, V., Coppi, P.S., Larson, R.B.: The formation of the first stars. I. The primordial star-forming cloud. ApJ 564, 23–51 (2002)Google Scholar
  30. Bromm, V., Larson, R.B.: The first stars. ARA&A 42, 79–118 (2004)ADSGoogle Scholar
  31. Bromm, V., Loeb, A.: High-redshift gamma-ray bursts from Population III progenitors. ApJ 642, 382–388 (2006)ADSGoogle Scholar
  32. Brouw, W.N., Spoelstra, T.A.T.: Linear polarization of the galactic background at frequencies between 408 and 1411 MHz. Reductions. A&AS 26, 129– + (1976)Google Scholar
  33. Bunker, A.J., Wilkins, S., Ellis, R.S., Stark, D.P., Lorenzoni, S., Chiu, K., Lacy, M., Jarvis, M.J., Hickey, S.: The contribution of high-redshift galaxies to cosmic reionization: new results from deep WFC3 imaging of the Hubble Ultra Deep Field. MNRAS 409, 855–866 (2010)ADSGoogle Scholar
  34. Calverley, A.P., Becker, G.D., Haehnelt, M.G., Bolton, J.S.: Measurements of the ultraviolet background at 4.6 ¡ z ¡ 6.4 using the quasar proximity effect. MNRAS 412, 2543–2562 (2011)ADSGoogle Scholar
  35. Carilli, C.L., Furlanetto, S., Briggs, F., Jarvis, M., Rawlings, S., Falcke, H.: Probing the dark ages with the square kilometer array. New Astron. Rev. 48, 1029–1038 (2004)ADSGoogle Scholar
  36. Carilli, C.L., Gnedin, N., Furlanetto, S., Owen, F.: Observations of HI 21-cm absorption by the neutral IGM during the epoch of re-ionization with the square kilometer array. New Astron. Rev. 48, 1053–1061 (2004)ADSGoogle Scholar
  37. Carilli, C.L., Gnedin, N.Y., Owen, F.: H I 21 centimeter absorption beyond the epoch of reionization. ApJ 577, 22–30 (2002)ADSGoogle Scholar
  38. Cen, R., McDonald, P.: Evolution of the ionizing radiation background and star formation in the aftermath of cosmological reionization. ApJ 570, 457–462 (2002)ADSGoogle Scholar
  39. Cen, R., Miralda-Escudé, J., Ostriker, J.P., Rauch, M.: Gravitational collapse of small-scale structure as the origin of the Lyman-alpha forest. ApJL 437, L9–L12 (1994)ADSGoogle Scholar
  40. Chen X., Kamionkowski, M.: Particle decays during the cosmic dark ages. PhRvD 70(4), 043502– + (2004)Google Scholar
  41. Choudhury, T.R., Ferrara, A.: Physics of cosmic reionization. ArXiv Astrophysics e-prints (2006)Google Scholar
  42. Chuzhoy, L., Alvarez, M.A., Shapiro, P.R.: Recognizing the first radiation sources through their 21 cm signature. ApJL 648, L1–L4 (2006)ADSGoogle Scholar
  43. Ciardi, B., Bianchi, S., Ferrara, A.: Lyman continuum escape from an inhomogeneous interstellar medium. MNRAS 331, 463–473 (2002)ADSGoogle Scholar
  44. Ciardi, B., Ferrara, A.: The first cosmic structures and their effects. Space Sci. Rev. 116, 625–705 (2005)ADSGoogle Scholar
  45. Ciardi, B., Ferrara, A., Marri, S., Raimondo, G.: Cosmological reionization around the first stars: Monte Carlo radiative transfer. MNRAS 324, 381–388 (2001)ADSGoogle Scholar
  46. Ciardi, B., Madau, P.: Probing beyond the epoch of hydrogen reionization with 21 centimeter radiation. ApJ 596, 1–8 (2003)ADSGoogle Scholar
  47. Cooray, A.: Cross-correlation studies between CMB temperature anisotropies and 21cm fluctuations. PhRvD 70(6), 063509– + (2004)Google Scholar
  48. Cooray, A., Sullivan, I., Chary, R.-R., Bock, J.J., Dickinson, M., Ferguson, H.C., Keating, B., Lange, A., Wright, E.L.: IR background anisotropies in Spitzer GOODS images and constraints on first galaxies. ApJL 659, L91–L94 (2007)ADSGoogle Scholar
  49. de Oliveira-Costa, A., Tegmark, M., Gaensler, B.M., Jonas, J., Landecker, T.L., Reich, P.: A model of diffuse Galactic radio emission from 10 MHz to 100 GHz. MNRAS 388, 247–260 (2008)ADSGoogle Scholar
  50. Di Matteo, T., Ciardi, B., Miniati, F.: The 21-cm emission from the reionization epoch: extended and point source foregrounds. MNRAS 355, 1053–1065 (2004)ADSGoogle Scholar
  51. Di Matteo, T., Perna, R., Abel, T., Rees, M.J.: Radio foregrounds for the 21 centimeter tomography of the neutral intergalactic medium at high redshifts. ApJ 564, 576–580 (2002)ADSGoogle Scholar
  52. Dijkstra, M., Haiman, Z., Loeb, A.: A limit from the x-ray background on the contribution of quasars to reionization. ApJ 613, 646–654 (2004)ADSGoogle Scholar
  53. Dijkstra, M., Haiman, Z., Spaans, M.: Lyα Radiation from collapsing Protogalaxies. I. Characteristics of the emergent spectrum. ApJ 649, 14–36 (2006)Google Scholar
  54. Doré, O., Holder, G., Alvarez, M., Iliev, I.T., Mellema, G., Pen, U.-L., Shapiro, P.R.: Signature of patchy reionization in the polarization anisotropy of the CMB. PhRvD 76(4), 043002– + (2007)Google Scholar
  55. Dove, J.B., Shull, J.M.: Photoionization of the diffuse interstellar medium and galactic halo by OB associations. ApJ 430, 222–235 (1994)ADSGoogle Scholar
  56. Dove, J.B., Shull, J.M., Ferrara, A.: The escape of ionizing photons from OB associations in disk galaxies: radiation transfer through superbubbles. ApJ 531, 846–860 (2000)ADSGoogle Scholar
  57. Dunkley, J., Komatsu, E., Nolta, M.R., Spergel, D.N., Larson, D., Hinshaw, G., Page, L., Bennett, C.L., Gold, B., Jarosik, N., Weiland, J.L., Halpern, M., Hill, R.S., Kogut, A., Limon, M., Meyer, S.S., Tucker, G.S., Wollack, E., Wright, E.L.: Five-year Wilkinson microwave anisotropy probe observations: likelihoods and parameters from the WMAP data. ApJS 180, 306–329 (2009)ADSGoogle Scholar
  58. Ewen, H.I., Purcell, E.M.: Observation of a line in the galactic radio spectrum: radiation from galactic hydrogen at 1,420 Mc./sec. Nature 168, 356– + (1951)Google Scholar
  59. Fan, X. et al.: A survey of z > 5.7 quasars in the sloan digital sky survey. II. Discovery of three additional quasars at z > 6. AJ 125, 1649–1659 (2003)ADSGoogle Scholar
  60. Fan, X. et al.: A survey of z > 5.7 quasars in the sloan digital sky survey. IV. Discovery of seven additional quasars. AJ 131, 1203–1209 (2006)ADSGoogle Scholar
  61. Field, G.B.: Excitation of the hydrogen 21-cm line. Proc. IRE 46, 240– + (1958)Google Scholar
  62. Field, G.B.: The spin temperature of intergalactic neutral hydrogen. ApJ 129, 536– + (1959)Google Scholar
  63. Field, G.B.: The time relaxation of a resonance-line profile. ApJ 129, 551– + (1959)Google Scholar
  64. Furlanetto, S.R.: The 21-cm forest. MNRAS 370, 1867–1875 (2006)ADSGoogle Scholar
  65. Furlanetto, S.R., Furlanetto, M.R.: Spin exchange rates in proton-hydrogen collisions. MNRAS 379, 130–134 (2007)ADSGoogle Scholar
  66. Furlanetto, S.R., Loeb, A.: The 21 centimeter forest: radio absorption spectra as probes of minihalos before reionization. ApJ 579, 1–9 (2002)ADSGoogle Scholar
  67. Furlanetto, S.R., Oh, S.P., Briggs, F.H.: Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe. PhysRep 433, 181–301 (2006)ADSGoogle Scholar
  68. Furlanetto, S.R., Stoever, S.J.: Secondary ionization and heating by fast electrons. MNRAS 404, 1869–1878 (2010)ADSGoogle Scholar
  69. Furlanetto, S.R., Zaldarriaga, M., Hernquist, L.: The growth of H II regions during reionization. ApJ 613, 1–15 (2004)ADSGoogle Scholar
  70. Giallongo, E., Cristiani, S., D’Odorico, S., Fontana, A.: A low upper limit to the lyman continuum emission of two galaxies at z  = 3. ApJL 568, L9–L12 (2002)ADSGoogle Scholar
  71. Gleser, L., Nusser, A., Benson, A.J.: Decontamination of cosmological 21-cm maps. MNRAS 391, 383–398 (2008)ADSGoogle Scholar
  72. Gleser, L., Nusser, A., Ciardi, B., Desjacques, V.: The morphology of cosmological reionization by means of Minkowski functionals. MNRAS 370, 1329–1338 (2006)ADSGoogle Scholar
  73. Gnedin, N.Y., Abel, T.: Multi-dimensional cosmological radiative transfer with a Variable Eddington Tensor formalism. New Astron. 6, 437–455 (2001)ADSGoogle Scholar
  74. Gunn, J.E., Peterson, B.A.: On the density of neutral hydrogen in intergalactic space. ApJ 142, 1633–1641 (1965)ADSGoogle Scholar
  75. Haiman, Z., Spaans, M., Quataert, E.: Lyα cooling radiation from high-redshift halos. ApJL 537, L5–L8 (2000)ADSGoogle Scholar
  76. Hamaker, J.P., Bregman, J.D., Sault, R.J.: Understanding radio polarimetry. I. Mathematical foundations. A&AS 117, 137–147 (1996)Google Scholar
  77. Harker, G., Zaroubi, S., Bernardi, G., Brentjens, M.A., de Bruyn, A.G., Ciardi, B., Jelić, V., Koopmans, L.V.E., Labropoulos, P., Mellema, G., Offringa, A., Pandey, V.N., Pawlik, A.H., Schaye, J., Thomas, R.M., Yatawatta, S.: Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case. MNRAS 405, 2492–2504 (2010)ADSGoogle Scholar
  78. Harker, G., Zaroubi, S., Bernardi, G., Brentjens, M.A., de Bruyn, A.G., Ciardi, B., Jelić, V., Koopmans, L.V.E., Labropoulos, P., Mellema, G., Offringa, A., Pandey, V.N., Schaye, J., Thomas, R.M., Yatawatta, S.: Non-parametric foreground subtraction for 21-cm epoch of reionization experiments. MNRAS 397, 1138–1152 (2009)ADSGoogle Scholar
  79. Harker, G.J.A., Zaroubi, S., Thomas, R.M., Jelić, V., Labropoulos, P., Mellema, G., Iliev, I.T., Bernardi, G., Brentjens, M.A., de Bruyn, A.G., Ciardi, B., Koopmans, L.V.E., Pandey, V.N., Pawlik, A.H., Schaye, J., Yatawatta, S.: Detection and extraction of signals from the epoch of reionization using higher-order one-point statistics. MNRAS 393, 1449–1458 (2009)ADSGoogle Scholar
  80. Haverkorn, M., Katgert, P., de Bruyn, A.G.: Multi-frequency polarimetry of the Galactic radio background around 350 MHz. I. A region in Auriga around l = 161 deg, b = 16 deg. A&A 403, 1031–1044 (2003)ADSGoogle Scholar
  81. Hernquist, L., Katz, N., Weinberg, D.H., Miralda-Escudé, J.: The lyman-alpha forest in the cold dark matter model. ApJL 457, L51 + (1996)Google Scholar
  82. Hobson, M.P., Maisinger, K.: Maximum-likelihood estimation of the cosmic microwave background power spectrum from interferometer observations. MNRAS 334, 569–588 (2002)ADSGoogle Scholar
  83. Hogan, C.J., Rees, M.J.: Spectral appearance of non-uniform gas at high Z. MNRAS 188, 791–798 (1979)ADSGoogle Scholar
  84. Holder, G.P., Haiman, Z., Kaplinghat, M., Knox, L.: The reionization history at high redshifts. II. Estimating the optical depth to Thomson scattering from cosmic microwave background polarization. ApJ 595, 13–18 (2003)Google Scholar
  85. Hu, W.: Wandering in the background: A CMB explorer. ArXiv Astrophysics e-prints (1995)Google Scholar
  86. W. Hu White, M.: A CMB polarization primer. New Astron. 2, 323–344 (1997)Google Scholar
  87. Hui, L., Gnedin, N.Y.: Equation of state of the photoionized intergalactic medium. MNRAS 292, 27– + (1997)Google Scholar
  88. Hui, L., Haiman, Z.: The thermal memory of reionization history. ApJ 596, 9–18 (2003)ADSGoogle Scholar
  89. Ichikawa, K., Barkana, R., Iliev, I.T., Mellema, G., Shapiro, P.R.: Measuring the history of cosmic reionization using the 21-cm probability distribution function from simulations. MNRAS 406, 2521–2532 (2010)ADSGoogle Scholar
  90. Iliev, I.T., Mellema, G., Pen, U.-L., Bond, J.R., Shapiro, P.R.: Current models of the observable consequences of cosmic reionization and their detectability. MNRAS 384, 863–874 (2008)ADSGoogle Scholar
  91. Inoue, A.K., Iwata, I., Deharveng, J.-M., Buat, V., Burgarella, D.: VLT narrow-band photometry in the Lyman continuum of two galaxies at z  3. Limits to the escape of ionizing flux. A&A 435, 471–482 (2005)Google Scholar
  92. Iwata, I., Inoue, A.K., Matsuda, Y., Furusawa, H., Hayashino, T., Kousai, K., Akiyama, M., Yamada, T., Burgarella, D., Deharveng, J.-M.: Detections of lyman continuum from star-forming galaxies at z   3 through subaru/suprime-cam narrow-band imaging. ApJ 692, 1287–1293 (2009)ADSGoogle Scholar
  93. Jelić, V., Zaroubi, S., Aghanim, N., Douspis, M., Koopmans, L.V.E., Langer, M., Mellema, G., Tashiro, H., Thomas, R.M.: A cross-correlation study between the cosmological 21 cm signal and the kinetic Sunyaev-Zel’dovich effect. MNRAS 402, 2279–2290 (2010)ADSGoogle Scholar
  94. Jelić, V., Zaroubi, S., Labropoulos, P., Bernardi, G., de Bruyn, A.G., Koopmans, L.V.E.: Realistic simulations of the Galactic polarized foreground: consequences for 21-cm reionization detection experiments. MNRAS 409, 1647–1659 (2010)ADSGoogle Scholar
  95. Jelić, V., Zaroubi, S., Labropoulos, P., Thomas, R.M., Bernardi, G., Brentjens, M.A., de Bruyn, A.G., Ciardi, B., Harker, G., Koopmans, L.V.E., Pandey, V.N.B, Schaye, J., Yatawatta, S.: Foreground simulations for the LOFAR-epoch of reionization experiment. MNRAS 389, 1319–1335 (2008)ADSGoogle Scholar
  96. Kaiser, N.: Clustering in real space and in redshift space. MNRAS 227, 1–21 (1987)ADSGoogle Scholar
  97. Kamionkowski, M., Kosowsky, A., Stebbins, A.: A probe of primordial gravity waves and vorticity. Phys. Rev. Lett. 78, 2058–2061 (1997)ADSGoogle Scholar
  98. Kashikawa, N., Shimasaku, K., Malkan, M.A., Doi, M., Matsuda, Y., Ouchi, M., Taniguchi, Y., Ly, C., Nagao, T., Iye, M., Motohara, K., Murayama, T., Murozono, K., Nariai, K., Ohta, K., Okamura, S., Sasaki, T., Shioya, Y., Umemura, M.: The end of the reionization epoch probed by Lyα emitters at z = 6.5 in the Subaru Deep Field. ApJ 648, 7–22 (2006)ADSGoogle Scholar
  99. Kashlinsky, A., Arendt, R.G., Mather, J., Moseley, S.H.: Tracing the first stars with fluctuations of the cosmic infrared background. Nature 438, 45–50 (2005)ADSGoogle Scholar
  100. Kasuya, S., Kawasaki, M.: Early reionization by decaying particles and cosmic microwave background radiation. PhRvD 70(10), 103519– + (2004)Google Scholar
  101. Kazemi, S., Yatawatta, S., Zaroubi, S., Lampropoulos, P., de Bruyn, A.G., Koopmans, L.V.E., Noordam, J.: Radio interferometric calibration using the SAGE algorithm. MNRAS 414, 1656–1666 (2011)ADSGoogle Scholar
  102. Kramer, R.H., Haiman, Z.: Probing re-ionization with quasar spectra: the impact of the intrinsic Lyman α emission line shape uncertainty. MNRAS 400, 1493–1511 (2009)ADSGoogle Scholar
  103. Labropoulos, P., Koopmans, L.V.E., Jelic, V., Yatawatta, S., Thomas, R.M., Bernardi, G., Brentjens, M., de Bruyn, G., Ciardi, B., Harker, G., Offringa, A., Pandey, V.N., Schaye, J., Zaroubi, S.: The LOFAR EoR data model: (I) Effects of noise and instrumental corruptions on the 21-cm reionization signal-extraction strategy. ArXiv e-prints (2009)Google Scholar
  104. Landecker, T.L., Wielebinski, R.: The galactic metre wave radiation: A two-frequency survey between declinations + 25o and − 25o and the preparation of a map of the whole sky. Aust. J. Phys. Astrophys. Suppl. 16, 1– + (1970)Google Scholar
  105. Latif, M.A., Schleicher, D.R.G., Spaans, M., Zaroubi, S.: Lyman alpha emission from the first galaxies: Implications of UV backgrounds and the formation of molecules. A&A 532, A66 (2011)ADSGoogle Scholar
  106. Latif, M.A., Schleicher, D.R.G., Spaans, M., Zaroubi, S.: Lyman α emission from the first galaxies: signatures of accretion and infall in the presence of line trapping. MNRAS 413, L33–L37 (2011)ADSGoogle Scholar
  107. Latif, M.A., Zaroubi, S., Spaans, M.: The impact of Lyman α trapping on the formation of primordial objects. MNRAS 411, 1659–1670 (2011)ADSGoogle Scholar
  108. Lawrence, A., Warren, S.J., Almaini, O., Edge, A.C., Hambly, N.C., Jameson, R.F., Lucas, P., Casali, M., Adamson, A., Dye, S., Emerson, J.P., Foucaud, S., Hewett, P., Hirst, P., Hodgkin, S.T., Irwin, M.J., Lodieu, N., McMahon, R.G., Simpson, C., Smail, I., Mortlock, D., Folger, M.: The UKIRT Infrared Deep Sky Survey (UKIDSS). MNRAS 379, 1599–1617 (2007)ADSGoogle Scholar
  109. Lazio, J., Carilli, C., Hewitt, J., Furlanetto, S., Burns, J.: The lunar radio array (LRA). In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7436 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2009)Google Scholar
  110. Lewis, A., Weller, J., Battye, R.: The cosmic microwave background and the ionization history of the Universe. MNRAS 373, 561–570 (2006)ADSGoogle Scholar
  111. Lidz, A., Faucher-Giguère, C.-A., Dall’Aglio, A., McQuinn, M., Fechner, C., Zaldarriaga, M., Hernquist, L., Dutta, S.: A measurement of small-scale structure in the 2.2 ¡ = z ¡ = 4.2 Lyα forest. ApJ 718, 199–230 (2010)ADSGoogle Scholar
  112. Lidz, A., Hui, L., Zaldarriaga, M., Scoccimarro, R.: How neutral is the intergalactic medium at z   6? ApJ 579, 491–499 (2002)ADSGoogle Scholar
  113. Lidz, A., Zahn, O., Furlanetto, S.R., McQuinn, M., Hernquist, L., Zaldarriaga, M.: Probing reionization with the 21 cm galaxy cross-power spectrum. ApJ 690, 252–266 (2009)ADSGoogle Scholar
  114. Liszt, H.: The spin temperature of warm interstellar H I. A&A 371, 698–707 (2001)ADSGoogle Scholar
  115. Loeb, A., Barkana, R.: The first light. ARA&A 39, 19–130 (2001)ADSGoogle Scholar
  116. Loeb, A., Zaldarriaga, M.: Measuring the small-scale power spectrum of cosmic density fluctuations through 21cm tomography prior to the epoch of structure formation. Phys. Rev. Lett. 92(21), 211301– + (2004)Google Scholar
  117. Ma, C.-P., Bertschinger, E.: Cosmological perturbation theory in the synchronous and conformal newtonian gauges. ApJ 455, 7– + (1995)Google Scholar
  118. Machacek, M.E., Bryan, G.L., Meiksin, A., Anninos, P., Thayer, D., Norman, M., Zhang, Y.: Hydrodynamical simulations of the Lyα forest: model comparisons. ApJ 532, 118–135 (2000)ADSGoogle Scholar
  119. Mack, K.J., Wyithe, J.S.B.: Detecting the redshifted 21cm forest during reionization. ArXiv e-prints (2011)Google Scholar
  120. Madau, P., Meiksin, A., Rees, M.J.: 21 centimeter tomography of the intergalactic medium at high redshift. ApJ 475, 429– + (1997)Google Scholar
  121. Mapelli, M., Ferrara, A.: Background radiation from sterile neutrino decay and reionization. MNRAS 364, 2–12 (2005)ADSGoogle Scholar
  122. Mapelli, M., Ferrara, A., Pierpaoli, E.: Impact of dark matter decays and annihilations on reionization. MNRAS 369, 1719–1724 (2006)ADSGoogle Scholar
  123. Maselli, A., Ferrara, A., Gallerani, S.: Interpreting the transmission windows of distant quasars. MNRAS 395, 1925–1933 (2009)ADSGoogle Scholar
  124. Maselli, A., Gallerani, S., Ferrara, A., Choudhury, T.R.: On the size of HII regions around high-redshift quasars. MNRAS 376, L34–L38 (2007)ADSGoogle Scholar
  125. McLure, R.J., Dunlop, J.S., Cirasuolo, M., Koekemoer, A.M., Sabbi, E., Stark, D.P., Targett, T.A., Ellis, R.S.: Galaxies at z = 6-9 from the WFC3/IR imaging of the Hubble Ultra Deep Field. MNRAS 403, 960–983 (2010)ADSGoogle Scholar
  126. Mellema, G., Iliev, I.T., Alvarez, M.A., Shapiro, P.R.: C2-ray: A new method for photon-conserving transport of ionizing radiation. New Astron. 11, 374–395 (2006)ADSGoogle Scholar
  127. Mesinger, A., Furlanetto, S.: Efficient simulations of early structure formation and reionization. ApJ 669, 663–675 (2007)ADSGoogle Scholar
  128. Mesinger, A., Furlanetto, S.: The inhomogeneous ionizing background following reionization. MNRAS 400, 1461–1471 (2009)ADSGoogle Scholar
  129. Mesinger, A., Furlanetto, S., Cen, R.: 21cmFAST: a fast, semi-numerical simulation of the high-redshift 21-cm signal. MNRAS 411, 955–972 (2011)ADSGoogle Scholar
  130. Mesinger, A., Haiman, Z.: Evidence of a cosmological Strömgren surface and of significant neutral hydrogen surrounding the quasar SDSS J1030 + 0524. ApJL 611, L69–L72 (2004)ADSGoogle Scholar
  131. Miralda-Escudé, J., Cen, R., Ostriker, J.P., Rauch, M.: The Ly alpha forest from gravitational collapse in the cold dark matter + lambda model. ApJ 471, 582– + (1996)Google Scholar
  132. Mo, H., van den Bosch, F.C., White, S.: Galaxy Formation and Evolution. Cambridge University Press (2010)Google Scholar
  133. Morales, M.F.: Power spectrum sensitivity and the design of epoch of reionization observatories. ApJ 619, 678–683 (2005)ADSGoogle Scholar
  134. Morales, M.F., Hewitt, J.: Toward epoch of reionization measurements with wide-field radio observations. ApJ 615, 7–18 (2004)ADSGoogle Scholar
  135. Morales, M.F., Wyithe, J.S.B.: Reionization and cosmology with 21-cm fluctuations. ARA&A 48, 127–171 (2010)ADSGoogle Scholar
  136. Moretti, A., Campana, S., Lazzati, D., Tagliaferri, G.: The resolved fraction of the cosmic x-ray background. ApJ 588, 696–703 (2003)ADSGoogle Scholar
  137. Mortlock, D.J., Warren, S.J., Venemans, B.P., Patel, M., Hewett, P.C., McMahon, R.G., Simpson, C., Theuns, T., Gonzáles-Solares, E.A., Adamson, A., Dye, S., Hambly, N.C., Hirst, P., Irwin, M.J., Kuiper, E., Lawrence, A., Röttgering, H.J.A.: A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011)ADSGoogle Scholar
  138. Mortonson, M.J., Hu, W.: Model-independent constraints on reionization from large-scale cosmic microwave background polarization. ApJ 672, 737–751 (2008)ADSGoogle Scholar
  139. Muller, C.A., Oort, J.H.: Observation of a Line in the galactic radio spectrum: the interstellar hydrogen line at 1,420 Mc./sec., and an estimate of galactic rotation. Nature 168, 357–358 (1951)ADSGoogle Scholar
  140. Murayama, T., Taniguchi, Y., Scoville, N.Z., Ajiki, M., Sanders, D.B., Mobasher, B., Aussel, H., Capak, P., Koekemoer, A., Shioya, Y., Nagao, T., Carilli, C., Ellis, R.S., Garilli, B., Giavalisco, M., Kitzbichler, M.G., Le Fèvre, O., Maccagni, D., Schinnerer, E., Smolčić, V., Tribiano, S., Cimatti, A., Komiyama, Y., Miyazaki, S., Sasaki, S.S., Koda, J., Karoji, H.: Lyα emitters at redshift 5.7 in the COSMOS field. ApJS 172, 523–544 (2007)ADSGoogle Scholar
  141. Nakamoto, T., Umemura, M., Susa, H.: The effects of radiative transfer on the reionization of an inhomogeneous universe. MNRAS 321, 593–604 (2001)ADSGoogle Scholar
  142. Natarajan, A., Schwarz, D.J.: Distinguishing standard reionization from dark matter models. PhRvD 81(12), 123510– + (2010)Google Scholar
  143. Nijboer, R.J., Noordam, J.E., Yatawatta, S.B.: LOFAR self-calibration using a local sky model. In: Gabriel, C., Arviset, C., Ponz, D., Enrique, S. (eds.) Astronomical Data Analysis Software and Systems XV, vol. 351 of Astronomical Society of the Pacific Conference Series, p. 291 (2006)Google Scholar
  144. Nusser, A.: The spin temperature of neutral hydrogen during cosmic pre-reionization. MNRAS 359, 183–190 (2005)ADSGoogle Scholar
  145. Oesch, P.A., Bouwens, R.J., Illingworth, G.D., Carollo, C.M., Franx, M., Labbé, I., Magee, D., Stiavelli, M., Trenti, M., van Dokkum, P.G.: z   7 galaxies in the HUDF: first epoch WFC3/IR results. ApJL 709, L16–L20 (2010)ADSGoogle Scholar
  146. Offringa, A.R., de Bruyn, A.G., Biehl, M., Zaroubi, S., Bernardi, G., Pandey, V.N.: Post-correlation radio frequency interference classification methods. MNRAS 405, 155–167 (2010)ADSGoogle Scholar
  147. Offringa, A.R., de Bruyn, A.G., Zaroubi, S., Biehl, M.: A LOFAR RFI detection pipeline and its first results. ArXiv e-prints, (2010)Google Scholar
  148. Ostriker, J.P., Vishniac, E.T.: Generation of microwave background fluctuations from nonlinear perturbations at the ERA of galaxy formation. ApJL 306, L51–L54 (1986)ADSGoogle Scholar
  149. Ouchi, M., Ono, Y., Egami, E., Saito, T., Oguri, M., McCarthy, P.J., Farrah, D., Kashikawa, N., Momcheva, I., Shimasaku, K., Nakanishi, K., Furusawa, H., Akiyama, M., Dunlop, J.S., Mortier, A.M.J., Okamura, S., Hayashi, M., Cirasuolo, M., Dressler, A., Iye, M., Jarvis, M.J., Kodama, T., Martin, C.L., McLure, R.J., Ohta, K., Yamada, T., Yoshida, M.: Discovery of a giant Lyα emitter near the reionization epoch. ApJ 696, 1164–1175 (2009)ADSGoogle Scholar
  150. Ouchi, M., Shimasaku, K., Furusawa, H., Saito, T., Yoshida, M., Akiyama, M., Ono, Y., Yamada, T., Ota, K., Kashikawa, N., Iye, M., Kodama, T., Okamura, S., Simpson, C., Yoshida, M.: Statistics of 207 Lyα emitters at a redshift near 7: Constraints on reionization and galaxy formation models. ApJ 723, 869–894 (2010)ADSGoogle Scholar
  151. Padmanabhan, N., Finkbeiner, D.P.: Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects. PhRvD 72(2), 023508– + (2005)Google Scholar
  152. Page, L., Hinshaw, G., Komatsu, E., Nolta, M.R., Spergel, D.N., Bennett, C.L., Barnes, C., Bean, R., Doré, O., Dunkley, J., Halpern, M., Hill, R.S., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Peiris, H.V., Tucker, G.S., Verde, L., Weiland, J.L., Wollack, E., Wright, E.L.: Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: polarization analysis. ApJS 170, 335–376 (2007)ADSGoogle Scholar
  153. Partridge, R.B., Peebles, P.J.E.: Are young galaxies visible? ApJ 147, 868– + (1967)Google Scholar
  154. Pawlik, A.H., Schaye, J.: TRAPHIC – radiative transfer for smoothed particle hydrodynamics simulations. MNRAS 389, 651–677 (2008)ADSGoogle Scholar
  155. Pearson, T.J., Readhead, A.C.S.: Image formation by self-calibration in radio astronomy. ARA&A 22, 97–130 (1984)ADSGoogle Scholar
  156. Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press (1993)Google Scholar
  157. Peebles, P.J.E., Yu, J.T.: Primeval adiabatic perturbation in an expanding Universe. ApJ 162, 815– + (1970)Google Scholar
  158. Pen, U.-L., Chang, T.-C., Hirata, C.M., Peterson, J.B., Roy, J., Gupta, Y., Odegova, J., Sigurdson, K.: The GMRT EoR experiment: limits on polarized sky brightness at 150 MHz. MNRAS 399, 181–194 (2009)ADSGoogle Scholar
  159. Pritchard, J.R., Furlanetto, S.R.: 21-cm fluctuations from inhomogeneous X-ray heating before reionization. MNRAS 376, 1680–1694 (2007)ADSGoogle Scholar
  160. Pritchard, J.R., Loeb, A.: Evolution of the 21cm signal throughout cosmic history. PhRvD 78(10), 103511– + (2008)Google Scholar
  161. Rasera, Y., Teyssier, R.: The history of the baryon budget. Cosmic logistics in a hierarchical universe. A&A 445, 1–27 (2006)zbMATHGoogle Scholar
  162. Rauch, M.: The lyman alpha forest in the spectra of QSOs. ARA&A 36, 267–316 (1998)ADSGoogle Scholar
  163. Razoumov, A.O., Cardall, C.Y.: Fully threaded transport engine: new method for multi-scale radiative transfer. MNRAS 362, 1413–1417 (2005)ADSGoogle Scholar
  164. Richard, J., Pelló, R., Schaerer, D., Le Borgne, J.-F., Kneib, J.-P.: Constraining the population of 6 ¡z ¡ 10 star-forming galaxies with deep near-IR images of lensing clusters. A&A 456, 861–880 (2006)ADSGoogle Scholar
  165. Ricotti, M., Ostriker, J.P.: Reionization, chemical enrichment and seed black holes from the first stars: is Population III important? MNRAS 350, 539–551 (2004)ADSGoogle Scholar
  166. Ricotti, M., Ostriker, J.P.: X-ray pre-ionization powered by accretion on the first black holes - I. A model for the WMAP polarization measurement. MNRAS 352, 547–562 (2004)Google Scholar
  167. Ricotti, M., Shull, J.M.: Feedback from galaxy formation: escaping ionizing radiation from galaxies at high redshift. ApJ 542, 548–558 (2000)ADSGoogle Scholar
  168. Ripamonti, E., Mapelli, M., Ferrara, A.: The impact of dark matter decays and annihilations on the formation of the first structures. MNRAS 375, 1399–1408 (2007)ADSGoogle Scholar
  169. Ripamonti, E., Mapelli, M., Zaroubi, S.: Radiation from early black holes - I. Effects on the neutral intergalactic medium. MNRAS 387, 158–172 (2008)Google Scholar
  170. Ritzerveld, J., Icke, V., Rijkhorst, E.-J.: Triangulating radiation: radiative transfer on unstructured grids. ArXiv Astrophysics e-prints (2003)Google Scholar
  171. Rogers, A.E.E., Bowman, J.D.: Spectral index of the diffuse radio background measured from 100 to 200 MHz. AJ 136, 641–648 (2008)ADSGoogle Scholar
  172. Rudie, G.C., Steidel, C.C., Trainor, R.F., Rakic, O., Bogosavljevic, M., Pettini, M., Reddy, N., Shapley, A.E., Erb, D.K., Law, D.R.: The gaseous environment of high-z galaxies: precision measurements of neutral hydrogen in the circumgalactic medium of z   2-3 galaxies in the keck baryonic structure survey. ApJ 750, 67 (2012)ADSGoogle Scholar
  173. Rybicki, G.B., Lightman, A.P.: Radiative Processes in Astrophysics. Wiley-VCH (Weinheim) (1986)Google Scholar
  174. Salvaterra, R., Ciardi, B., Ferrara, A., Baccigalupi, C.: Reionization history from coupled cosmic microwave background/21-cm line data. MNRAS 360, 1063–1068 (2005)ADSGoogle Scholar
  175. Salvaterra, R., Haardt, F., Ferrara, A.: Cosmic backgrounds from miniquasars. MNRAS 362, L50–L54 (2005)ADSGoogle Scholar
  176. Santos, M.G., Cooray, A., Knox, L.: Multifrequency analysis of 21 centimeter fluctuations from the era of reionization. ApJ 625, 575–587 (2005)ADSGoogle Scholar
  177. Santos, M.G., Ferramacho, L., Silva, M.B., Amblard, A., Cooray, A.: Fast large volume simulations of the 21-cm signal from the reionization and pre-reionization epochs. MNRAS 406, 2421–2432 (2010)ADSGoogle Scholar
  178. Schaye, J., Theuns, T., Rauch, M., Efstathiou, G., Sargent, W.L.W.: The thermal history of the intergalactic medium. MNRAS 318, 817–826 (2000)ADSGoogle Scholar
  179. Scheuer, P.A.G.: A sensitive test for the presence of atomic hydrogen in intergalactic space. Nature 207, 963– + (1965)Google Scholar
  180. Scott, D., Rees, M.J.: The 21-cm line at high redshift: a diagnostic for the origin of large scale structure. MNRAS 247, 510– + (1990)Google Scholar
  181. Shapley, A.E., Steidel, C.C., Pettini, M., Adelberger, K.L., Erb, D.K.: The direct detection of lyman continuum emission from star-forming galaxies at z 3. ApJ 651, 688–703 (2006)ADSGoogle Scholar
  182. Shaver, P.A., Windhorst, R.A., Madau, P., de Bruyn, A.G.: Can the reionization epoch be detected as a global signature in the cosmic background? A&A 345, 380–390 (1999)ADSGoogle Scholar
  183. Shull, J.M., van Steenberg, M.E.: X-ray secondary heating and ionization in quasar emission-line clouds. ApJ 298, 268–274 (1985)ADSGoogle Scholar
  184. Smirnov, O.M., Noordam, J.E.: The LOFAR global sky model: some design challenges. In: Ochsenbein, F., Allen, M.G., & Egret, D. (eds.) Astronomical Data Analysis Software and Systems (ADASS) XIII, vol. 314 of Astronomical Society of the Pacific Conference Series, pp. 18– + , (2004)Google Scholar
  185. Smith, F.J.: Hydrogen atom spin-change collisions. Planet. Space Sci. 14, 929– + (1966)Google Scholar
  186. Sołtan, A.M.: The diffuse X-ray background. A&A 408, 39–42 (2003)ADSGoogle Scholar
  187. Spergel, D.N., Bean, R., Doré, O., Nolta, M.R., Bennett, C.L., Dunkley, J., Hinshaw, G., Jarosik, N., Komatsu, E., Page, L., Peiris, H.V., Verde, L., Halpern, M., Hill, R.S., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Tucker, G.S., Weiland, J.L., Wollack, E., Wright, E.L.: Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology. ApJS 170, 377–408 (2007)ADSGoogle Scholar
  188. Stark, D., Ellis, R., Richard, J.: The case for an abundant population of feeble Lyman-alpha emitting galaxies at z ¿ 8. In American Astronomical Society Meeting Abstracts, volume 38 of Bulletin of the American Astronomical Society, pp. 143.02– + (2007)Google Scholar
  189. Steidel, C.C., Pettini, M., Adelberger, K.L.: Lyman-continuum emission from galaxies at Z   = 3.4. ApJ 546, 665–671 (2001)ADSGoogle Scholar
  190. Sugiyama, N.: Cosmic background anisotropies in cold dark matter cosmology. ApJS 100, 281– + (1995)Google Scholar
  191. Sun, X.H., Reich, W.: Simulated square kilometre array maps from Galactic 3D-emission models. A&A 507, 1087–1105 (2009)ADSGoogle Scholar
  192. Sun, X.H., Reich, W., Waelkens, A., Enßlin, T.A.: Radio observational constraints on Galactic 3D-emission models. A&A 477, 573–592 (2008)ADSGoogle Scholar
  193. Sunyaev, R.A., Zeldovich, I.B.: The velocity of clusters of galaxies relative to the microwave background - The possibility of its measurement. MNRAS 190, 413–420 (1980)ADSGoogle Scholar
  194. Sunyaev, R.A., Zeldovich, I.B.: Intergalactic gas in clusters of galaxies, the microwave background, and cosmology. Astrophys. Space Phys. Rev. 1, 1–60 (1981)ADSGoogle Scholar
  195. Sunyaev, R.A., Zeldovich, Y.B.: The observations of relic radiation as a test of the nature of x-ray radiation from the clusters of galaxies. Comments Astrophys. Space Phys. 4, 173– + (1972)Google Scholar
  196. Susa, H.: Smoothed particle hydrodynamics coupled with radiation transfer. PASJ 58, 445–460 (2006)ADSGoogle Scholar
  197. Tashiro, H., Aghanim, N., Langer, M., Douspis, M., Zaroubi, S.: The cross-correlation of the CMB polarization and the 21-cm line fluctuations from cosmic reionization. MNRAS 389, 469–477 (2008)ADSGoogle Scholar
  198. Tashiro, H., Aghanim, N., Langer, M., Douspis, M., Zaroubi, S., Jelic, V.: Detectability of the 21-cm CMB cross-correlation from the epoch of reionization. MNRAS 402, 2617–2625 (2010)ADSGoogle Scholar
  199. Tashiro, H., Aghanim, N., Langer, M., Douspis, M., Zaroubi, S., Jelić, V.: Second order cross-correlation between kinetic Sunyaev-Zel’dovich effect and 21-cm fluctuations from the epoch of reionization. MNRAS 638– + (2011)Google Scholar
  200. Taylor, G.B., Carilli, C.L., Perley, R.A. (eds.): In: Synthesis Imaging in Radio Astronomy II, vol. 180 of Astronomical Society of the Pacific Conference Series (1999)Google Scholar
  201. Theuns, T., Leonard, A., Efstathiou, G., Pearce, F.R., Thomas, P.A.: Pˆ3M-SPH simulations of the Lyalpha forest. MNRAS 301, 478–502 (1998)ADSGoogle Scholar
  202. Theuns, T., Schaye, J., Zaroubi, S., Kim, T.-S., Tzanavaris, P., Carswell, B.: Constraints on reionization from the thermal history of the intergalactic medium. ApJL 567, L103–L106 (2002)ADSGoogle Scholar
  203. Theuns, T., Zaroubi, S., Kim, T.-S., Tzanavaris, P., Carswell, R.F.: Temperature fluctuations in the intergalactic medium. MNRAS 332, 367–382 (2002)ADSGoogle Scholar
  204. Thomas, R.M., Zaroubi, S.: Time-evolution of ionization and heating around first stars and miniqsos. MNRAS 384, 1080–1096 (2008)ADSGoogle Scholar
  205. Thomas, R.M., Zaroubi, S.: On the spin-temperature evolution during the epoch of reionization. MNRAS 410, 1377–1390 (2011)ADSGoogle Scholar
  206. Thomas, R.M., Zaroubi, S., Ciardi, B., Pawlik, A.H., Labropoulos, P., Jelić, V., Bernardi, G., Brentjens, M.A., de Bruyn, A.G., Harker, G.J.A., Koopmans, L.V.E., Mellema, G., Pandey, V.N., Schaye, J., Yatawatta, S.: Fast large-scale reionization simulations. MNRAS 393, 32–48 (2009)ADSGoogle Scholar
  207. Thompson, A.R., Moran, J.M., Swenson, G.W. Jr.: Interferometry and Synthesis in Radio Astronomy, 2nd edn. (2001)Google Scholar
  208. Valdés, M., Evoli, C., Ferrara, A.: Particle energy cascade in the intergalactic medium. MNRAS 404, 1569–1582 (2010)ADSGoogle Scholar
  209. van de Hulst, H.C.: Nederlands Tijdschrift voor Natuuurkunde 11, 210–221 (1945)Google Scholar
  210. Waelkens, A., Jaffe, T., Reinecke, M., Kitaura, F.S., Enßlin, T.A.: Simulating polarized Galactic synchrotron emission at all frequencies. The Hammurabi code. A&A 495, 697–706 (2009)Google Scholar
  211. Whalen, D., Norman, M.L.: A multistep algorithm for the radiation hydrodynamical transport of cosmological ionization fronts and ionized flows. ApJS 162, 281–303 (2006)ADSGoogle Scholar
  212. Wild, J.P.: The radio-frequency line spectrum of atomic hydrogen and its applications in astronomy. ApJ 115, 206– + (1952)Google Scholar
  213. Wilman, R.J., Miller, L., Jarvis, M.J., Mauch, T., Levrier, F., Abdalla, F.B., Rawlings, S., Klöckner, H.-R., Obreschkow, D., Olteanu, D., Young, S.: A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes. MNRAS 388, 1335–1348 (2008)ADSGoogle Scholar
  214. Wood, K., Loeb, A.: Escape of ionizing radiation from high-redshift galaxies. ApJ 545, 86–99 (2000)ADSGoogle Scholar
  215. Wouthuysen, S.A.: On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. AJ 57, 31–32 (1952)Google Scholar
  216. Wyithe, J.S.B., Bolton, J.S., Haehnelt, M.G.: Reionization bias in high-redshift quasar near-zones. MNRAS 383, 691–704 (2008)ADSGoogle Scholar
  217. Wyithe, J.S.B., Loeb, A.: A characteristic size of  10Mpc for the ionized bubbles at the end of cosmic reionization. Nature 432, 194–196 (2004)ADSGoogle Scholar
  218. Wyithe, J.S.B., Loeb, A.: A large neutral fraction of cosmic hydrogen a billion years after the Big Bang. Nature 427, 815–817 (2004)ADSGoogle Scholar
  219. Xu, Y., Chen, X., Fan, Z., Trac, H., Cen, R.: The 21 cm forest as a probe of the reionization and the temperature of the intergalactic medium. ApJ 704, 1396–1404 (2009)ADSGoogle Scholar
  220. Yatawatta, S., Zaroubi, S., de Bruyn, G., Koopmans, L., Noordam, J.: Radio interferometric calibration using The SAGE algorithm. In: Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 2009. DSP/SPE 2009. IEEE 13th (2009)Google Scholar
  221. Yoshida, N., Abel, T., Hernquist, L., Sugiyama, N.: Simulations of early structure formation: primordial gas clouds. ApJ 592, 645–663 (2003)ADSGoogle Scholar
  222. Zahn, O., Lidz, A., McQuinn, M., Dutta, S., Hernquist, L., Zaldarriaga, M., Furlanetto, S.R.: Simulations and analytic calculations of Bubble growth during hydrogen reionization. ApJ 654, 12–26 (2007)ADSGoogle Scholar
  223. Zahn, O., Mesinger, A., McQuinn, M., Trac, H., Cen, R., Hernquist, L.E.: Comparison of reionization models: radiative transfer simulations and approximate, seminumeric models. MNRAS 414, 727–738 (2011)ADSGoogle Scholar
  224. Zaldarriaga, M.: Polarization of the microwave background in reionized models. PhRvD 55, 1822–1829 (1997)ADSGoogle Scholar
  225. Zaldarriaga, M.: Searching for fluctuations in the intergalactic medium temperature using the Lyα forest. ApJ 564, 153–161 (2002)ADSGoogle Scholar
  226. Zaldarriaga, M., Furlanetto, S.R., Hernquist, L.: 21 centimeter fluctuations from cosmic gas at high redshifts. ApJ 608, 622–635 (2004)ADSGoogle Scholar
  227. Zaldarriaga, M., Seljak, U.: All-sky analysis of polarization in the microwave background. PhRvD 55, 1830–1840 (1997)ADSGoogle Scholar
  228. Zaroubi, S.: Probing the epoch of reionization with low frequency arrays. In: Torchinsky, S.A., van Ardenne, A., van den Brink-Havinga, T., van Es, A., Faulkner, A.J. (eds.) Widefield Science and Technology for the SKA, pp. 75– + (2010)Google Scholar
  229. Zaroubi, S., Silk, J.: LOFAR as a probe of the sources of cosmological reionization. MNRAS 360, L64–L67 (2005)ADSGoogle Scholar
  230. Zaroubi, S., Thomas, R.M., Sugiyama, N., Silk, J.: Heating of the intergalactic medium by primordial miniquasars. MNRAS 375, 1269–1279 (2007)ADSGoogle Scholar
  231. Zhang, L., Chen, X., Lei, Y.-A., Si, Z.-G.: Impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background. PhRvD 74(10), 103519– + (2006)Google Scholar
  232. Zhang, Y., Anninos, P., Norman, M.L.: A multispecies model for hydrogen and helium absorbers in Lyman-Alpha forest clouds. ApJL 453, L57 + (1995)Google Scholar
  233. Zhang, Y., Anninos, P., Norman, M.L., Meiksin, A.: Spectral analysis of the Ly alpha forest in a cold dark matter cosmology. ApJ 485, 496– + (1997)Google Scholar
  234. Zygelman, B.: Hyperfine level-changing collisions of hydrogen atoms and tomography of the dark age universe. ApJ 622, 1356–1362 (2005)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Kapteyn Astronomical InstituteGroningenThe Netherlands
  2. 2.Physics DepartmentThe Technion>HaifaIsrael

Personalised recommendations