Skip to main content

More SPASS with Isabelle

Superposition with Hard Sorts and Configurable Simplification

  • Conference paper
Interactive Theorem Proving (ITP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7406))

Included in the following conference series:

Abstract

Sledgehammer for Isabelle/HOL integrates automatic theorem provers to discharge interactive proof obligations. This paper considers a tighter integration of the superposition prover SPASS to increase Sledgehammer’s success rate. The main enhancements are native support for hard sorts (simple types) in SPASS, simplification that honors the orientation of Isabelle simp rules, and a pair of clause-selection strategies targeted at large lemma libraries. The usefulness of this integration is confirmed by an evaluation on a vast benchmark suite and by a case study featuring a formalization of language-based security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 84–99. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A Modular Integration of SAT/SMT Solvers to COQ through Proof Witnesses. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bezem, M., Hendriks, D., de Nivelle, H.: Automatic proof construction in type theory using resolution. J. Autom. Reas. 29(3-4), 253–275 (2002)

    Article  MATH  Google Scholar 

  5. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT Solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 116–130. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Blanchette, J.C., Böhme, S., Smallbone, N.: Monotonicity or how to encode polymorphic types safely and efficiently, http://www21.in.tum.de/~blanchet/mono-trans.pdf

  7. Blanchette, J.C., Paskevich, A.: TFF1: The TPTP typed first-order form with rank-1 polymorphism, http://www21.in.tum.de/~blanchet/tff1spec.pdf

  8. Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in SMT solvers. In: Barrett, C., de Moura, L. (eds.) SMT 2008, pp. 1–5. ICPS, ACM (2008)

    Google Scholar 

  9. Bobot, F., Paskevich, A.: Expressing Polymorphic Types in a Many-Sorted Language. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 87–102. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 107–121. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Böhme, S., Weber, T.: Fast LCF-Style Proof Reconstruction for Z3. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte, W., Tobies, S.: VCC: A Practical System for Verifying Concurrent C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Eggers, A., Kruglov, E., Kupferschmid, S., Scheibler, K., Teige, T., Weidenbach, C.: Superposition Modulo Non-linear Arithmetic. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 119–134. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Filliâtre, J.C.: Private Communication (March 2012)

    Google Scholar 

  15. Ganzinger, H., Meyer, C., Weidenbach, C.: Soft Typing for Ordered Resolution. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 321–335. Springer, Heidelberg (1997)

    Google Scholar 

  16. Gonthier, G.: Formal proof—The four-color theorem. N. AMS 55(11), 1382–1393 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Guttmann, W., Struth, G., Weber, T.: Automating Algebraic Methods in Isabelle. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 617–632. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Hurd, J.: Integrating Gandalf and HOL. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 311–321. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer, M., Di Vito, B., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in Higher Order Logics, pp. 56–68, No. CP-2003-212448 in NASA Technical Reports (2003)

    Google Scholar 

  20. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal verification of an operating-system kernel. C. ACM 53(6), 107–115 (2010)

    Article  Google Scholar 

  21. Klein, G., Nipkow, T., Paulson, L. (eds.): The Archive of Formal Proofs, http://afp.sf.net/

  22. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)

    Google Scholar 

  23. Leroy, X.: A formally verified compiler back-end. J. Autom. Reas. 43(4), 363–446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Leroy, X.: Private Communication (October 2011)

    Google Scholar 

  25. McCune, W., Shumsky, O.: System Description: IVY. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 401–405. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  26. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study combining HOL-Light and CVC Lite. ENTCS 144(2), 43–51 (2006)

    Google Scholar 

  27. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reas. 40(1), 35–60 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Applied Logic 7(1), 41–57 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  31. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E., Schulz, S. (eds.) IWIL 2010 (2010)

    Google Scholar 

  32. Paulson, L.C., Susanto, K.W.: Source-Level Proof Reconstruction for Interactive Theorem Proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 232–245. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Popescu, A., Hölzl, J., Nipkow, T.: Proving possibilistic, probabilistic noninterference, http://www21.in.tum.de/~popescua/pos.pdf (submitted)

  34. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Comm. 15(2-3), 91–110 (2002)

    MATH  Google Scholar 

  35. Rudnicki, P., Urban, J.: Escape to ATP for Mizar. In: Fontaine, P., Stump, A. (eds.) PxTP 2011 (2011)

    Google Scholar 

  36. Rushby, J.M.: Tutorial: Automated formal methods with PVS, SAL, and Yices. In: Hung, D.V., Pandya, P. (eds.) SEFM 2006, p. 262. IEEE (2006)

    Google Scholar 

  37. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel. Areas Comm. 21(1), 5–19 (2003)

    Article  Google Scholar 

  38. Schulz, S.: System Description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  39. Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., Pollet, M.: Proof development with Ωmega: The irrationality of \(\sqrt2\). In: Kamareddine, F. (ed.) Thirty Five Years of Automating Mathematics. Applied Logic, vol. 28, pp. 271–314. Springer, Heidelberg (2003)

    Google Scholar 

  40. Sutcliffe, G.: The TPTP problem library and associated infrastructure—The FOF and CNF parts, v3.5.0. J. Autom. Reas. 43(4), 337–362 (2009)

    Article  MATH  Google Scholar 

  41. Sutcliffe, G.: The CADE-23 automated theorem proving system competition—CASC-23. AI Comm. 25(1), 49–63 (2012)

    Google Scholar 

  42. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP Typed First-Order Form with Arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  43. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, pp. 1965–2013. Elsevier (2001)

    Google Scholar 

  44. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS Version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  45. Wos, L., Robinson, G.A., Carson, D.F.: Efficiency and completeness of the set of support strategy in theorem proving. J. ACM 12(4), 536–541 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blanchette, J.C., Popescu, A., Wand, D., Weidenbach, C. (2012). More SPASS with Isabelle. In: Beringer, L., Felty, A. (eds) Interactive Theorem Proving. ITP 2012. Lecture Notes in Computer Science, vol 7406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32347-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32347-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32346-1

  • Online ISBN: 978-3-642-32347-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics