Charge!

A Framework for Higher-Order Separation Logic in Coq
  • Jesper Bengtson
  • Jonas Braband Jensen
  • Lars Birkedal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7406)

Abstract

We present a comprehensive set of tactics for working with a shallow embedding of a higher-order separation logic for a subset of Java in Coq. The tactics make it possible to reason at a level of abstraction similar to pen-and-paper separation-logic proof outlines. In particular, the tactics allow the user to reason in the embedded logic rather than in the concrete model, where the stacks and heaps are exposed. The development is generic in the choice of heap model, and most of the development is also independent of the choice of programming language.

Keywords

Normal Form Program Variable Proof Assistant Binary Search Tree Separation Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appel, A.W.: Tactics for separation logic, Draft (January 2006), http://www.cs.princeton.edu/~appel/papers/septacs.pdf
  2. 2.
    Bengtson, J., Jensen, J.B., Sieczkowski, F., Birkedal, L.: Verifying Object-Oriented Programs with Higher-Order Separation Logic in COQ. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 22–38. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Biering, B., Birkedal, L., Torp-Smith, N.: BI Hyperdoctrines and Higher-Order Separation Logic. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 233–247. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Biering, B., Birkedal, L., Torp-Smith, N.: BI-hyperdoctrines, higher-order separation logic, and abstraction. ACM Trans. Program. Lang. Syst. 29(5) (2007)Google Scholar
  5. 5.
    Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic. In: Proceedings of LICS, pp. 366–378 (2007)Google Scholar
  6. 6.
    Chlipala, A.: Mostly-automated verification of low-level programs in computational separation logic. In: PLDI, pp. 234–245 (2011)Google Scholar
  7. 7.
    Dockins, R., Hobor, A., Appel, A.W.: A Fresh Look at Separation Algebras and Share Accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Dodds, M., Jagannathan, S., Parkinson, M.J.: Modular reasoning for deterministic parallelism. In: Proceedings of POPL (2011)Google Scholar
  9. 9.
    Jacobs, B., Piessens, F.: The verifast program verifier. CW Reports CW520, Department of Computer Science, K.U. Leuven (August 2008)Google Scholar
  10. 10.
    Krishnaswami, N.R., Aldrich, J., Birkedal, L., Svendsen, K., Buisse, A.: Design patterns in separation logic. In: Proceedings of TLDI, pp. 105–116 (2009)Google Scholar
  11. 11.
    McCreight, A.: Practical Tactics for Separation Logic. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 343–358. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Nanevski, A., Ahmed, A., Morrisett, G., Birkedal, L.: Abstract Predicates and Mutable ADTs in Hoare Type Theory. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 189–204. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Parkinson, M.J., Bornat, R., Calcagno, C.: Variables as resource in Hoare logic. In: Proceedings of LICS, pp. 137–146. IEEE (2006)Google Scholar
  14. 14.
    Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested Hoare Triples and Frame Rules for Higher-Order Store. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 440–454. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Svendsen, K., Birkedal, L., Parkinson, M.: Verifying Generics and Delegates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 175–199. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Tuerk, T.: A Formalisation of Smallfoot in HOL. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 469–484. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Varming, C., Birkedal, L.: Higher-order separation logic in Isabelle/HOLCF. Electr. Notes Theor. Comput. Sci. 218, 371–389 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jesper Bengtson
    • 1
  • Jonas Braband Jensen
    • 1
  • Lars Birkedal
    • 1
  1. 1.IT University of CopenhagenDenmark

Personalised recommendations