Towards Provably Robust Watermarking

  • David Baelde
  • Pierre Courtieu
  • David Gross-Amblard
  • Christine Paulin-Mohring
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7406)


Watermarking techniques are used to help identify copies of publicly released information. They consist in applying a slight and secret modification to the data before its release, in a way that should be robust, i.e., remain recognizable even in (reasonably) modified copies of the data. In this paper, we present new results about the robustness of watermarking schemes against arbitrary attackers, and the formalization of those results in Coq. We used the Alea library, which formalizes probability theory and models probabilistic programs using a simple monadic translation. This work illustrates the strengths and particularities of the induced style of reasoning about probabilistic programs. Our technique for proving robustness is adapted from methods commonly used for cryptographic protocols, and we discuss its relevance to the field of watermarking.


Turing Machine Watermark Scheme Probabilistic Program Marked Copy Watermark Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adelsbach, A., Katzenbeisser, S., Sadeghi, A.-R.: A Computational Model for Watermark Robustness. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 145–160. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Haas, P.J., Kiernan, J.: Watermarking Relational Data: Framework, Algorithms and Analysis. VLDB J. 12(2), 157–169 (2003)CrossRefGoogle Scholar
  3. 3.
    Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in COQ. MPC 2006 74(8), 568–589 (2009); A preliminary version appeared in the Proc. of MPC 2006MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based cryptographic proofs. In: Shao, Z., Pierce, B.C. (eds.) POPL, pp. 90–101. ACM (2009)Google Scholar
  5. 5.
    Barthe, G., Grégoire, B., Heraud, S., Zanella Béguelin, S.: Computer-Aided Security Proofs for the Working Cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Braibant, T., Pous, D.: Tactics for Reasoning Modulo AC in COQ. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 167–182. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Cox, I.J., Miller, M.L., Bloom, J.A.: Digital Watermarking. Morgan Kaufmann Publishers, Inc., San Francisco (2001)Google Scholar
  8. 8.
    Hasan, O., Tahar, S.: Probabilistic Analysis Using Theorem Proving. VDM Verlag (2008)Google Scholar
  9. 9.
    Hopper, N.J., Molnar, D., Wagner, D.: From Weak to Strong Watermarking. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD thesis, University of Cambridge (2002)Google Scholar
  11. 11.
    Katzenbeisser, S.: A computational model for digital watermarks. In: Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2005) (2005)Google Scholar
  12. 12.
    Khanna, S., Zane, F.: Watermarking maps: hiding information in structured data. In: SODA, pp. 596–605 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Baelde
    • 1
    • 2
  • Pierre Courtieu
    • 3
  • David Gross-Amblard
    • 4
  • Christine Paulin-Mohring
    • 1
  1. 1.LRI-PROVAL – Université Paris Sud/CNRS/INRIASaclayFrance
  2. 2.IT University of CopenhagenDenmark
  3. 3.Cédric – CNAMParisFrance
  4. 4.IRISA – Université Rennes 1RennesFrance

Personalised recommendations