Advertisement

A Bigtable/MapReduce-Based Cloud Infrastructure for Effectively and Efficiently Managing Large-Scale Sensor Networks

  • Byunggu Yu
  • Alfredo Cuzzocrea
  • Dong Jeong
  • Sergey Maydebura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7450)

Abstract

This paper proposes a novel approach for effectively and efficiently managing large-scale sensor networks defining a Cloud infrastructure that makes use of Bigtable at the data layer and MapReduce at the processing layer. We provide principles and architecture of our proposed infrastructure along with its experimental evaluation on a real-life computational platform. Experiments clearly confirm the effectiveness and the efficiency of the proposed research.

Keywords

Bigtable MapReduce Cloud computing Large-scale sensor networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apache Hadoop, http://hadoop.apache.org
  2. 2.
    Apache, HBase, http://hbase.apache.org
  3. 3.
    Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications. Knowledge Engineering Review 11(2), 93–155 (1996)CrossRefGoogle Scholar
  4. 4.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data. ACM Transactions on Computer Systems 26(2), Art. 4 (2008)Google Scholar
  5. 5.
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  6. 6.
    Yu, B.: A Spatiotemporal Uncertainty Model of Degree 1.5 for Continuously Changing Data Objects. In: Proceedings of ACM SAC Int. Conf., pp. 1150–1155 (2006)Google Scholar
  7. 7.
    Yu, B., Bailey, T.: Processing Partially Specified Queries over High-Dimensional Databases. Data & Knowledge Engineering 62(1), 177–197 (2007)CrossRefGoogle Scholar
  8. 8.
    Yu, B., Kim, S.H.: Interpolating and Using Most Likely Trajectories in Moving-Objects Databases. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 718–727. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Yu, B., Kim, S.H., Alkobaisi, S., Bae, W.D., Bailey, T.: The Tornado Model: Uncertainty Model for Continuously Changing Data. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 624–636. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Yu, B., Sen, R., Jeong, D.H.: An Integrated Framework for Managing Sensor Data Uncertainty using Cloud Computing. Information Systems (2012), doi:10.1126/ j.is.2011.12.003Google Scholar
  11. 11.
    Hacigumus, H., Iyer, B., Mehrotra, S.: Providing Database as a Service. In: Proceedings of IEEE ICDE Int. Conf., pp. 29–38 (2002)Google Scholar
  12. 12.
    Agrawal, D., Das, D., El Abbadi, A.: Big Data and Cloud Computing: Current State and Future Opportunities. In: Proceedings of EDBT Int. Conf., pp. 530–533 (2011)Google Scholar
  13. 13.
    Balazinska, M., Deshpande, A., Franklin, M.J., Gibbons, P.B., Gray, J., Hansen, M.H., Liebhold, M., Nath, S., Szalay, A.S., Tao, V.: Data Management in the Worldwide Sensor Web. IEEE Pervasive Computing 6(2), 30–40 (2007)CrossRefGoogle Scholar
  14. 14.
    Diao, Y., Ganesan, D., Mathur, G., Shenoy, P.J.: Rethinking Data Management for Storage-centric Sensor Networks. In: Proceedings of CIDR Int. Conf., pp. 22–31 (2007)Google Scholar
  15. 15.
    Li, M., Ganesan, D., Shenoy, P.J.: PRESTO: Deedback-Driven Data Management in Sensor Networks. IEEE/ACM Transactions on Networking 17(4), 1256–1269 (2009)CrossRefGoogle Scholar
  16. 16.
    Yao, Y., Gehrke, J.E.: The Cougar Approach to In-Network Query Processing in Sensor Networks. SIGMOD Record 31(3), 9–18 (2002)CrossRefGoogle Scholar
  17. 17.
    Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TinyDB: An Acqusitional Query Processing System for Sensor Networks. ACM Transactions on Database Systems 30(1), 122–173 (2005)CrossRefGoogle Scholar
  18. 18.
    Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-Driven Data Acquisition in Sensor Networks. In: Proceedings of VLDB Int. Conf., pp. 588–599 (2004)Google Scholar
  19. 19.
    Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D., Heidemann, J., Govindan, R.: Multi-Resolution Storage in Sensor Networks. ACM Tranasctions on Storage 1(3), 277–315 (2005)CrossRefGoogle Scholar
  20. 20.
    Cuzzocrea, A.: Intelligent Techniques for Warehousing and Mining Sensor Network Data. IGI Global (2009)Google Scholar
  21. 21.
    Cuzzocrea, A., Furfaro, F., Mazzeo, G.M., Saccà, D.: A Grid Framework for Approximate Aggregate Query Answering on Summarized Sensor Network Readings. In: Proceedings of GADA Int. Conf., pp. 144–153 (2004)Google Scholar
  22. 22.
    Cuzzocrea, A., Chakravarthy, S.: Event-Based Lossy Compression for Effective and Efficient OLAP over Data Streams. Data & Knowledge Enginering 69(7), 678–708 (2010)CrossRefGoogle Scholar
  23. 23.
    Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub Totals. Data Mining and Knowledge Discovery 1(1), 29–53 (1997)CrossRefGoogle Scholar
  24. 24.
    Cuzzocrea, A.: CAMS: OLAPing Multidimensional Data Streams Efficiently. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 48–62. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Cuzzocrea, A.: Retrieving Accurate Estimates to OLAP Queries over Uncertain and Imprecise Multidimensional Data Streams. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 575–576. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Apache ZooKeeper, http://zookeeper.apache.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Byunggu Yu
    • 1
  • Alfredo Cuzzocrea
    • 2
  • Dong Jeong
    • 1
  • Sergey Maydebura
    • 1
  1. 1.Department of Computer Science and Information TechnologyUniversity of the District of ColumbiaWashingtonUSA
  2. 2.ICAR-CNR and University of CalabriaRendeItaly

Personalised recommendations