Advertisement

Compact Descriptor for Video Sequence Matching in the Context of Large Scale 3D Reconstruction

  • Roman Parys
  • Florian Liefers
  • Andreas Schilling
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 183)

Abstract

One of the key problems in the large scale reconstruction of 3D scenes from images is how to efficiently compute image relations in large databases. Finding images depicting the same 3D geometry is the pre-requisite for camera calibration and 3D reconstruction. In this chapter we present a simple and compact descriptor that enables us to efficiently compute similarity between video sequences. In addition to providing a similarity measure, the descriptor also makes it possible to select individual video frames that match together. With our descriptors, this computation can be done in a time similar to that required by the traditional SIFT algorithm to match just two images. Using the presented descriptors, we can build a large relation graph between video streams or image sequences. This relation graph is used later in assembling a large geometric model.

Keywords

Video Sequence Cluster Center Scale Invariant Feature Transform Compact Descriptor Scale Invariant Feature Transform Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2006, vol. 1, pp. 519–528. IEEE Computer Society, Washington, DC (2006)Google Scholar
  2. 2.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  3. 3.
    Hampapur, A., Hyun, K., Bolle, R.M.: Comparison of sequence matching techniques for video copy detection. In: Storage and Retrieval for Media Databases, pp. 194–201 (2002)Google Scholar
  4. 4.
    Kim, Y.-T., Chua, T.-S.: Retrieval of news video using video sequence matching. In: Proceedings of the 11th International Multimedia Modelling Conference, MMM 2005, pp. 68–75. IEEE Computer Society, Washington, DC (2005)Google Scholar
  5. 5.
    Kim, S.H., Park, R.-H.: An efficient algorithm for video sequence matching using the modified hausdorff distance and the directed divergence. IEEE Trans. Circuits Syst. Video Techn. 12(7), 592–596 (2002)CrossRefGoogle Scholar
  6. 6.
    Chen, L., Stentiford, F.W.M.: Video sequence matching based on temporal ordinal measurement. Pattern Recogn. Lett. 29(13), 1824–1831 (2008)CrossRefGoogle Scholar
  7. 7.
    Yeh, M.-C., Cheng, K.-T.: Video copy detection by fast sequence matching. In: Proceedings of the ACM International Conference on Image and Video Retrieval, CIVR 2009, pp. 45:1–45:7. ACM, New York (2009)Google Scholar
  8. 8.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  9. 9.
    Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In: NIPS, pp. 1509–1517 (2009)Google Scholar
  10. 10.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42(3), 145–175 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on a Cloudless Day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query expansion with a generative feature model for object retrieval. In: IEEE International Conference on Computer Vision (2007)Google Scholar
  13. 13.
    Risvik, K.M., Aasheim, Y., Lidal, M.: Multi-tier architecture for web search engines. Web Congress, Latin American, 132 (2003)Google Scholar
  14. 14.
    Barroso, L.A., Dean, J., Hölzle, U.: Web search for a planet: The google cluster architecture. IEEE Micro. 23(2), 22–28 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roman Parys
    • 1
  • Florian Liefers
    • 1
  • Andreas Schilling
    • 1
  1. 1.Tuebingen UniversityTübingenGermany

Personalised recommendations