Simulation-Based Performance Study of e-Commerce Web Server System – Results for FIFO Scheduling

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 183)

Abstract

The chapter concerns the issue of overloaded Web server performance evaluation using a simulation-based approach. We focus on a Business-to-Consumer (B2C) environment and consider server performance both from the perspective of computer system efficiency and e-business profitability. Results of simulation experiments for the Web server system under First-In-First-Out (FIFO) scheduling are discussed. Much attention has been paid to the analysis of the impact of a limited server system capacity on business-related performance metrics.

Keywords

Online Retailer Shopping Cart Potential Revenue Workload Scenario Ordinary Customer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    8 seconds to capture attention, Silverpop’s Landing Page Report (June 2007), http://www.silverpop.com/practices/studies/landing_page
  2. 2.
    Banga, G., Druschel, P.: Measuring the capacity of a Web server. In: Proc. of USITS 1997, Berkeley, CA, pp. 61–71 (1997)Google Scholar
  3. 3.
    Barford, P., Crovella, M.: A performance evaluation of hyper text transfer protocols. In: Proc. of ACM SIGMETRICS 1999, Atlanta, pp. 188–197 (1999)Google Scholar
  4. 4.
    Borzemski, L., Suchacka, G.: Business-oriented admission control and request scheduling for e-commerce websites. Cybernetics and Systems 41(8), 592–609 (2010)CrossRefGoogle Scholar
  5. 5.
    García, D.F., García, J.: TPC-W e-commerce benchmark evaluation. IEEE Computer 36(2), 42–48 (2003)CrossRefGoogle Scholar
  6. 6.
    Jin, T., Mosberger, D.: httperf: A tool for measuring Web server performance. In: Proc. of ACM WISP, pp. 59–67. Madison, WI (1998)Google Scholar
  7. 7.
    Measure twice, cut once – metrics for online retailers, Buystream, E-Metric Research Group, http://www.techexchange.com/thelibrary/online_retail_metrics.html
  8. 8.
    Menascé, D.A., Almeida, V.A.F.: Capacity planning for Web services: metrics. Prentice-Hall, New York (2002)Google Scholar
  9. 9.
    Nielsen, J.: Why people shop on the Web (February 1999), http://www.useit.com/alertbox/990207.html (updated: April 2002)
  10. 10.
    PHARM, University of Wisconsin – Madison, http://mitglied.lycos.de/jankiefer/tpcw/index.html (access date: June 4, 2012)
  11. 11.
    Qin, W., Wang, Q.: An LPV approximation for admission control of an Internet Web server: identification and control. Control Engineering Practice 15(12), 1457–1467 (2007)CrossRefGoogle Scholar
  12. 12.
    Retail Web site performance: consumer reaction to a poor online shopping experience. Jupiter Research and Akamai Report (2006), http://www.akamai.com/dl/reports/Site_Abandonment_Final_Report.pdf
  13. 13.
    Schroeder, B., Harchol-Balter, M.: Web servers under overload: how scheduling can help. ACM Transactions on Internet Technology (TOIT) 6(1), 20–52 (2006)CrossRefGoogle Scholar
  14. 14.
    SpecWeb99. The standard performance evaluation corporation, http://www.spec.org (access date: April 22, 2010)
  15. 15.
    Suchacka, G., Borzemski, L.: Simulation-based performance study of e-commerce Web server system - methodology and metrics. In: Information Systems Architecture and Technology – Web Information Systems Engineering, Knowledge Discovery and Hybrid Computing, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, pp. 25–35 (2011)Google Scholar
  16. 16.
    The need for speed II, Zona Market Bulletin, No. 5 (2001)Google Scholar
  17. 17.
    Totok, A., Karamcheti, V.: RDRP: Reward-Driven Request Prioritization for e-commerce Web sites. Electronic Commerce Research and Applications 9, 549–561 (2010)CrossRefGoogle Scholar
  18. 18.
    TPC-W-NYU, New York University, http://cs1.cs.nyu.edu/totok/professional/software/tpcw/tpcw.html (access date: June 4, 2012)
  19. 19.
    WebBench 5.0, http://cs.uccs.edu/~cs526/webbench/webbench.htm (access date: April 22, 2010),
  20. 20.
    WebStone - The benchmark for Web servers, http://www.mindcraft.com/benchmarks/webstone (access date: April 22, 2010)
  21. 21.
    Yue, C., Wang, H.: Profit-aware overload protection in e-commerce Web sites. Journal of Network and Computer Applications 32(2), 347–356 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsOpole UniversityOpolePoland
  2. 2.Institute of InformaticsWrocław University of TechnologyWrocławPoland

Personalised recommendations