Advertisement

Dynamical Systems

  • Carlo A. Furia
  • Dino Mandrioli
  • Angelo Morzenti
  • Matteo Rossi
Chapter
Part of the Monographs in Theoretical Computer Science. An EATCS Series book series (EATCS)

Abstract

In this chapter, we recall, though well-known examples, the main concepts and definitions concerning dynamical systems. We introduce the classic notion of state-space representation of discrete-time and of continuous-time dynamical systems, and we discuss how one can move from the latter to the former. This chapter also briefly presents cellular automata, a family of discrete-time dynamical systems than can be used to model computations. Using the dimensions presented in Chap. 3 as reference, the chapter then describes the main features of the representation of time in dynamical systems.

Keywords

Cellular Automaton Dynamical System Model Explicit Function Dynamical System Theory Classical Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arnold, V.: Catastrophe Theory. Springer, Berlin (2004)Google Scholar
  2. 2.
    Benacerraf, P., Putnam, H. (eds.): Philosophy of Mathematics: Selected Readings. Cambridge University Press, Cambridge (1983)Google Scholar
  3. 3.
    Bittanti, S., Colaneri, P.: Periodic Systems: Filtering and Control. Springer, London (2009)Google Scholar
  4. 4.
    Boyer, C.B.: A History of Mathematics. Wiley, New York (1991). 2nd edn, revised by Uta C. MerzbachGoogle Scholar
  5. 5.
    Burden, R.L., Faires, J.D.: Numerical Analysis. Brooks Cole, Pacific Grove (2010)Google Scholar
  6. 6.
    Byrne, C.L.: Signal Processing: A Mathematical Approach. A. K. Peters, Wellesley (2005)Google Scholar
  7. 7.
    Chong, P.K.: The life and work of Leonardo of Pisa. Menemui Mat. 4(2), 60–66 (1982)Google Scholar
  8. 8.
    Chua, L.O., Desoer, C.A., Kuh, E.S.: Linear and Nonlinear Circuits. McGraw-Hill, New York (1987)Google Scholar
  9. 9.
    Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)Google Scholar
  10. 10.
    Ernest, P.: New angles on old rules. Times Higher Educational Supplement. http://people.exeter.ac.uk/PErnest/pome12/article2.htm (1996). Accessed 6 Sept 1996
  11. 11.
    Hamming, R.: Numerical Methods for Scientists and Engineers. Dover, New York (1987)Google Scholar
  12. 12.
    Hilborn, R.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (2001)Google Scholar
  13. 13.
    Horadam, A.F.: Eight hundred years young. Aust. Math. Teach. 31, 123–134 (1975)Google Scholar
  14. 14.
    Khalil, H.: Nonlinear Systems, 2nd edn. Prentice-Hall, Upper Saddle River (1995)Google Scholar
  15. 15.
    Lathi, B.P.: Signal Processing and Linear Systems. Oxford University Press, Oxford (2000)Google Scholar
  16. 16.
    Leader, J.J.: Numerical Analysis and Scientific Computation. Addison-Wesley, Boston (2004)Google Scholar
  17. 17.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)Google Scholar
  18. 18.
    Modelica and the Modelica Association. http://www.modelica.org
  19. 19.
    Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64(20), 2354–2357 (1990)Google Scholar
  20. 20.
    Proakis, J.G., Manolakis, D.K.: Digital Signal Processing, 4th edn. Prentice Hall, Upper Saddle River (2006)Google Scholar
  21. 21.
    Schiff, J.L.: Cellular Automata: A Discrete View of the World. Wiley, Hoboken (2008)Google Scholar
  22. 22.
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, 2nd edn. Wiley, Chichester (2005)Google Scholar
  23. 23.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Cambridge (2001)Google Scholar
  24. 24.
    von Neumann, J.: The general and logical theory of automata. In: Jeffress L.A. (ed.) Cerebral Mechanisms in Behavior—The Hixon Symposium, pp. 1–31. Wiley, New York (1951)Google Scholar
  25. 25.
    von Neumann, J.: The Theory of Self-reproducing Automata. University of Illinois, Urbana (1966)Google Scholar
  26. 26.
    Wolfram, S.: Cellular Automata and Complexity. Perseus Books Group, Oxford (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carlo A. Furia
    • 1
  • Dino Mandrioli
    • 2
  • Angelo Morzenti
    • 2
  • Matteo Rossi
    • 2
  1. 1.Department of Computer ScienceZürichSwitzerland
  2. 2.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanItaly

Personalised recommendations