Topological and Geometric Data Handling for Time-Dependent Geo-Objects Realized in DB4GeO

  • Martin Breunig
  • Edgar Butwilowski
  • Paul Vincent Kuper
  • Daria Golovko
  • Andreas Thomsen
Part of the Advances in Geographic Information Science book series (AGIS)


In advanced spatio-temporal scenarios, such as the simulation of complex geo-processes, the analysis of complex surface- and volume-based objects changing their locations and shapes in time is a central task. For example, the documentation of landfills, mass movements or volcanic activities requires 4D modeling based on dynamic geometric and topological database structures. In this contribution we present our concepts and implementation efforts for the effective handling of geospatial and time-dependent data realized in DB4GeO, a service-based geo-database architecture. The topological and geometric data models of DB4GeO are described in detail. A geoscientific application of an open-pit mine demonstrates the usefulness of the concepts introduced at the beginning of the paper. Finally, an outlook is given on future geo-database work dealing with extensions of DB4GeO and the handling of geo-objects in the context of cooperative 4D metro tracks planning


Simplicial Complex Incidence Graph Topological Operation Insert Edge Multiple Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Jürgen Berlekamp from USF, Osnabrück University and the Survey Office of Osnabrück city for the permission to use the Piesberg dataset for scientific purposes.This research has been funded by the German Research Foundation (DFG), grant no. BR2128/12-1 and BR2128/14-1.


  1. Balovnev O, Bode T, Breunig M, Cremers AB, Möller W, Pogodaev G, Shumilov S, Siebeck J, Siehl A, Thomsen A (2004) The story of the geotoolkit–an object-oriented geodatabase kernel system. GeoInformatica 8(1):5–47CrossRefGoogle Scholar
  2. Bär W (2007) Verwaltung geowissenschaftlicher 3D daten in mobilen datenbanksystemen. Ph.D thesis, University of Osnabrück, GermanyGoogle Scholar
  3. Baumgart BG (1975) A polyhedron representation for computer vision. In: Proceedings of 1975 national computer conference, AFIPS, pp 589–596, 19–22 May 1975Google Scholar
  4. Breunig M (2001) On the way to component-based 3D/4D geoinformation systems. Lecture notes in earth sciences, vol 94. Springer, Heidelberg, p 199Google Scholar
  5. Breunig M, Bode T, Cremers AB, (1994) Implementation of elementary geometric database operations for 3D-GIS. In: Waugh T, Healey R (eds) Proceedings of the 6th international symposium on spatial data handling, Edinburgh, pp 604–617Google Scholar
  6. Breunig M, Schilberg B, Thomsen A, Kuper PV, Jahn M, Butwilowski E (2010) DB4GeO, a 3D/4D geodatabase and its application for the analysis of landslides. Lecture notes geoinformation and cartography risk crisis management, pp 83–102Google Scholar
  7. Brisson E (1989) Representing geometric structures in d dimensions: topology and order. In: Proceedings of the 5th ACM symposium on computational geometry, ACM Press, Washington, pp 218–227Google Scholar
  8. Butwilowski E, Breunig M (2010) Requirements and implementation issues of a topology component in 3D geo-databases. Poster Abstract. In: Proceedings of the 13th AGILE international conference on geographic information scienceGoogle Scholar
  9. Devillers O, Kettner L, Pion S, Seel M, Yvinec M (2011) Handles, ranges and circulators, September 2011. Accessed 06 Jan 2012
  10. Döner F, Thompson R, Stoter J, Lemmen C, Ploeger H, van Oosterom P, Zlatanova S (2010) 4d cadastres: first analysis of legal, organizational and technical impact–with a case study on utility networks. Land Use Policy 27:1068–1081CrossRefGoogle Scholar
  11. Fielding RT, Taylor RN (2002) Principled design of the modern web architecture. ACM Trans Internet Technol 2(2):115–150CrossRefGoogle Scholar
  12. Goodchild MF (1990) Keynote address: spatial information science. In: Proceedings, fourth international symposium on spatial data handling, Vol 1. Zurich, pp 13–14Google Scholar
  13. Kuper PV (2010) Entwicklung einer 4D objekt-verwaltung für die geodatenbank DB4GeO. University of Osnabrück, Germany, Diploma thesisGoogle Scholar
  14. Lautenbach S, Berlekamp J (2002) Data set for the visualization of Piesberg Landfill in Osnabrück. University of Osnabrück, Germany Institute of Environmental Systems ResearchGoogle Scholar
  15. Lévy B, Mallet J-L (1999) Cellular modeling in arbitrary dimension using generalized maps. Accessed 14 Dec 2011
  16. Lienhardt P (1989) Subdivisions of n-dimensional spaces and n-dimensional generalized maps. Proceedings of the fifth annual symposium on computational geometry, Washington, ACM Press, In, pp 228–236Google Scholar
  17. Mäntylä M (1988) Introduction to solid modeling. Computer Science Press, RockvilleGoogle Scholar
  18. Marble DF (ed) (1984) In: Proceedings, international symposium on spatial data handling, Zürich (1984) Geographisches Institut. Universität Zürich-Irchel, Abteilung Kartographie/EDVGoogle Scholar
  19. Pigot S (1992) A topological modeling for a 3D spatial information system. In: Proceedings of the 5th international symposium on spatial data handling, Charleston, South Carolina, pp 344–360Google Scholar
  20. Polthier K, Rumpf M (1995) A concept for time-dependent processes. Visualization in Scientific Computing, Springer, Berlin pp 137–153Google Scholar
  21. Pouliot J, Badard T, Desgagné E, Bédard K, Thomas K (2007) Development of a web geological feature server (WGFS) for sharing and querying of 3D objects. In: van Oosterom et al. (eds) Advances in 3D geoinformation systems–Lecture notes in geoinformation and cartography, pp 115–130Google Scholar
  22. Pouliot J, Bédard K, Kirkwood D, Lachance B (2008) Reasoning about geological space: coupling 3D geomodels and topological queries as an aid to spatial data selection. Comput Geosci 34(5):529–541Google Scholar
  23. Pouliot J, Roy T, Fouquet-Asselin G, Desgroseilliers J (2010) 3D Cadastre in the province of quebec: a first experiment for the construction of a volumetric representation. In: Kolbe GNC, Knig TH (eds) Advances in 3D geo-information sciences. Lecture notes geoinformation and cartographyGoogle Scholar
  24. Rolfs C (2005) Konzeption und implementierung eines datenmodells zur verwaltung von zeitabhängigen 3D-modellen in geowissenschaftlichen anwendungen. University of Osnabrück, Germany, Diploma thesisGoogle Scholar
  25. Schaeben H, Apel M, Boogaart KGvd, Kroner U, (2003) GIS 2D, 3D, 4D, nD. Von geographischen zu geowissenschaftlichen informationssystemen. Informatik-Spektrum 26(3):173–179Google Scholar
  26. Strathoff F (1999) Speichereffiziente verwaltung zeitabhängiger geometrien für ein geotoolkit. University of Bonn, Germany, Diploma thesisGoogle Scholar
  27. Versant (2011) Accessed 22 Nov 2011
  28. Weiler K (1985) Edge-based data structures for solid modeling in curved-surface environments. Comput Graph Appl 5(1):21–40CrossRefGoogle Scholar
  29. Weiler K (1986) The radial edge structure: a topological representation for non-manifold geometric boundary modeling. In: Proceedings of the IFIG WG 5.2Google Scholar
  30. Worboys MF (1992) A model for spatio-temporal information. In: Proceedings of the 5th international symposium on spatial data handling. Vol 1, pp 602–611Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Breunig
    • 1
  • Edgar Butwilowski
    • 1
  • Paul Vincent Kuper
    • 1
  • Daria Golovko
    • 1
  • Andreas Thomsen
    • 2
  1. 1.Geodetic InstituteKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute of GeosciencesChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations