Skip to main content

Pre-Processing for Image Sequence Visualization Robust to Illumination Variations

  • 1408 Accesses

Part of the Advanced Structured Materials book series (STRUCTMAT,volume 32)

Abstract

Several images (a sequence) may be used to obtain better image quality. This method is perfect for super-resolution algorithms, which improve sub-pixel clarity of the image and allow a more detailed view. It is possible that illumination variations, e.g. those caused by a light source, lessen the benefits of super-resolution algorithms. The reduction of the quantity of such occurrences by stabilizing variations is important. An enhanced stabilization algorithm is proposed for purposes of reduction of variations in illumination. It is based on the energy contained in wavelet coefficients. In the proposed algorithm, energy plays a role of the memory buffer in memory-based techniques of illumination variation reduction. The benefits of the proposed image stabilization are the higher quality of images and better visualization. Possible applications are in surveillance, product quality control, engine monitoring, corrosion monitoring, micro/nano microscopy, etc.

Keywords

  • Illumination variations
  • Wavelet transform
  • Super-resolution
  • Parseval relation
  • Energy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-32295-2_4
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-32295-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Amer, A.: Memory-based spatio-temporal real-time object segmentation for video surveillance. In: Proceedings of the Conference on Real-time Imaging VII, Santa Clara, CA, vol. 5012, pp. 10–21. 22–23 Jan 2003

    Google Scholar 

  2. Zhichao, L., Joo, E.M.: Face recognition under varying illumination. In: Er, M.J. (ed.) New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems, InTech, Rijeka (2010)

    Google Scholar 

  3. Perronnin, F., Dugelay, J.L.: A model of illumination variation for robust face recognition. Workshop on multimodal user authentication, Santa Barbara, USA, 11–12 Dec 2003

    Google Scholar 

  4. Eekeren, A.W.M., Schutte, K., Vliet, L.J.: Multiframe super-resolution reconstruction of small moving objects. IEEE Trans. Image Process 19, 2901–2912 (2010)

    CrossRef  Google Scholar 

  5. Robinson, M.D., Toth, C.A., Lo, J.Y., Farsiu, S.: Efficient fourier-wavelet super-resolution. IEEE Trans. Image Process 19, 2669–2681 (2010)

    CrossRef  Google Scholar 

  6. He, Y., Yap, K.H., Chen, L., Chau, L.P.: A nonlinear least square technique for simultaneous image registration and super-resolution. IEEE Trans. Image Process 16, 2830–2841 (2007)

    CrossRef  Google Scholar 

  7. Brito, A.E., Chan, S.H., Cabrera, S.D.: SAR image superresolution via 2-D adaptive extrapolation. Multidimension. Syst. Signal Process. 14, 83–104 (2003)

    CrossRef  Google Scholar 

  8. Ng, M.K., Yau, A.C.: Super-resolution image restoration from blurred low-resolution images. J Math Imaging Vis 23, 367–378 (2005)

    CrossRef  Google Scholar 

  9. Vandewalle, P.: Super-resolution from unregistered aliased images. Ph.D. thesis, École Polytechnique Fédérale De Lausanne (2006)

    Google Scholar 

  10. Nguyen, N., Milanfar, P.: A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution). Circ. Syst. Signal Process. 19, 321–338 (2000)

    CrossRef  Google Scholar 

  11. Bose, N.K.: Image phase-only information for landmine classification using ANN and DT/wavelet superresolution from image sequence. Sixth Annual Army Landmine Research Technical Review Meeting, Springfield, VA, 23 Jan 2003

    Google Scholar 

  12. Mastriani, M.: New wavelet-based superresolution algorithm for speckle reduction in SAR images. Int. J. Comp. Sci. 1, 291–298 (2006)

    Google Scholar 

  13. Bose, N.K., Letrattanapanich, S., Chappalli, M.B.: Superresolution with second generation wavelets. Signal Process. Image 19, 387–391 (2004)

    CrossRef  Google Scholar 

  14. Bose, N.K., Chappalli, M.B.: A second-generation wavelet framework for super-resolution with noise filtering. Int. J. Imaging Syst. Technol. 14, 84–89 (2004)

    CrossRef  Google Scholar 

  15. Rosin, P., Ioannidis, E.: Evaluation of global image thresholding for change detection. Pattern Recogn. Lett. 24, 2345–2356 (2003)

    CrossRef  Google Scholar 

  16. Porter, R., Fraser, A.M., Hush, D.: Wide-area motion imagery. IEEE Signal Process. Mag. 27, 56–65 (2010)

    CrossRef  Google Scholar 

  17. Dorf, R.C.: The Electrical Engineering Handbook. CRC Press LLC, Boca Raton (2000)

    Google Scholar 

  18. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. edn. Academic Press, New York (1999)

    Google Scholar 

  19. Poularikas, A.D.: Signals and Systems Primer with Matlab. CRC Press, New York (2007)

    Google Scholar 

  20. Mertins, A.: Signal Analysis: Wavelets, Filter Banks Time-Frequency Transforms and Applications. Wiley, West Sussex (1999)

    Google Scholar 

  21. Eekeren, A.W.M., Schutte, K., Vliet, L.J.: Multiframe Super-Resolution Reconstruction of Small Moving Objects. IEEE Trans. Image Process. 19, 2901–2912 (2010)

    CrossRef  Google Scholar 

  22. Vujović, I., Kuzmanić, I., Vujović, M.: Algorithm for combined wavelet quasi-superresolution. In: Proceedings of 5th International Symposium Communication Systems Networks and Digital Signal Processing, Patras, Greece, vol. 1, pp. 469–473, 19–21 July 2006

    Google Scholar 

  23. Vujović, I., Kuzmanić, I.: Wavelet quasi-superresolution in marine applications. In: Proceedings of the 48th International Symposium ELMAR—2006 focused on Multimedia Signal Processing and Communications, Zadar, Croatia, vol. 1, pp. 65–68 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivica Kuzmanić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuzmanić, I., Beroš, S.M., Šoda, J., Vujović, I. (2013). Pre-Processing for Image Sequence Visualization Robust to Illumination Variations. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Design and Analysis of Materials and Engineering Structures. Advanced Structured Materials, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32295-2_4

Download citation