Algorithms and Complexity

  • Dieter Jungnickel
Part of the Algorithms and Computation in Mathematics book series (AACIM, volume 5)


In this chapter, we show in an intuitive manner what an algorithm is and develop a way to measure the quality of algorithms. In particular, we consider some basic aspects of graph theoretic algorithms such as, for example, the problem of how to represent a graph. Moreover, we need a way to formulate the algorithms we deal with. We shall illustrate and study these concepts quite thoroughly using two specific examples, namely Euler tours and acyclic digraphs. At the end of the chapter we consider a class of apparently very difficult problems (the so-called NP-complete problems) which plays a central role in complexity theory; we will meet this type of problem over and over again in this book.


Polynomial Time Decision Problem Complexity Theory Hamiltonian Cycle Vertex Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [AhoHU74]
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison Wesley, Reading (1974) zbMATHGoogle Scholar
  2. [AhoHU83]
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms. Addison Wesley, Reading (1983) zbMATHGoogle Scholar
  3. [AroBa09]
    Arora, S., Barak, B.: Computational Complexity. A Modern Approach. Cambridge University Press, Cambridge (2009) zbMATHCrossRefGoogle Scholar
  4. [Bae53]
    Bäbler, F.: Über eine spezielle Klasse Eulerscher Graphen. Comment. Math. Helv. 21, 81–100 (1953) CrossRefGoogle Scholar
  5. [BauWo82]
    Bauer, F.L., Wössner, H.: Algorithmic Language and Program Development. Springer, Berlin (1982) zbMATHCrossRefGoogle Scholar
  6. [Big93]
    Biggs, N.L.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993) Google Scholar
  7. [Boo94]
    Book, R.V.: Relativizations of the P =? NP and other problems: developments in structural complexity theory. SIAM Rev. 36, 157–175 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Bor87]
    Borgwardt, K.H.: The Simplex Method. A Probabilistic Analysis. Springer, Berlin (1987) zbMATHGoogle Scholar
  9. [Bur97]
    Burkard, R.E.: Efficiently solvable special cases of hard combinatorial optimization problems. Math. Program. 79, 55–69 (1997) zbMATHMathSciNetGoogle Scholar
  10. [BurDDW98]
    Burkard, R.E., Deineko, V.G., van Dal, R., van der Veen, J.A.A., Woeginger, G.J.: Well-solvable special cases of the traveling salesman problem: a survey. SIAM Rev. 40, 496–546 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  11. [CamLi91]
    Cameron, P.J., van Lint, J.H.: Designs, Graphs, Codes and Their Links. Cambridge University Press, Cambridge (1991) zbMATHCrossRefGoogle Scholar
  12. [ChaWh70]
    Chartrand, G., White, A.T.: Randomly transversable graphs. Elem. Math. 25, 101–107 (1970) zbMATHMathSciNetGoogle Scholar
  13. [Coo71]
    Cook, S.A.: The complexity of theorem proving procedures. In: Proc. 3rd ACM Symp. on the Theory of Computing, pp. 151–158 (1971) Google Scholar
  14. [CorLRS09]
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009) zbMATHGoogle Scholar
  15. [CveDS80]
    Cvetkovic, D.M., Doob, M., Sachs, H.: Spectra of Graphs. Academic Press, New York (1980) Google Scholar
  16. [CveDGT87]
    Cvetkovic, D.M., Doob, M., Gutman, I., Torgasev, A.: Recent Results in the Theory of Graph Spectra. North Holland, New York (1987) Google Scholar
  17. [deB46]
    de Bruijn, N.G.: A combinatorial problem. Indag. Math. 8, 461–467 (1946) Google Scholar
  18. [Edm65b]
    Edmonds, J.: Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965) zbMATHCrossRefMathSciNetGoogle Scholar
  19. [Etz86]
    Etzion, T.: An algorithm for constructing m-ary de Bruijn sequences. J. Algorithms 7, 331–340 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  20. [Eve73]
    Even, S.: Combinatorial Algorithms. Macmillan, New York (1973) Google Scholar
  21. [GarJo79]
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979) zbMATHGoogle Scholar
  22. [Gol67]
    Golomb, S.W.: Shift Register Sequences. Holden-Day, San Francisco (1967) zbMATHGoogle Scholar
  23. [Hie73]
    Hierholzer, C.: Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Math. Ann. 6, 30–32 (1873) zbMATHCrossRefMathSciNetGoogle Scholar
  24. [HopUl79]
    Hopcroft, J., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison Wesley, Reading (1979) zbMATHGoogle Scholar
  25. [JenWi85]
    Jensen, K., Wirth, N.: PASCAL User Manual and Report, 3rd edn. Springer, New York (1985) zbMATHCrossRefGoogle Scholar
  26. [Jun93]
    Jungnickel, D.: Finite Fields. B.I. Wissenschaftsverlag, Mannheim (1993) zbMATHGoogle Scholar
  27. [Kah62]
    Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5, 558–562 (1962) zbMATHCrossRefGoogle Scholar
  28. [Kar72]
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972) CrossRefGoogle Scholar
  29. [Khu12]
    Khuller, S.: Design and Analysis of Algorithms: Course Notes. Dept. of Computer Science, University of Maryland Google Scholar
  30. [KorVy12]
    Korte, B., Vygen, J.: Combinatorial Optimization. Theory and Algorithms, 5th edn. Springer, Berlin (2012) Google Scholar
  31. [LewPa81]
    Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation. Prentice Hall, Englewood Cliffs (1981) zbMATHGoogle Scholar
  32. [Lue82]
    Lüneburg, H.: Programmbeispiele aus Algebra, Zahlentheorie und Kombinatorik. Report, Universität Kaiserslautern (1982) Google Scholar
  33. [MacSl77]
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977) zbMATHGoogle Scholar
  34. [Meh84]
    Mehlhorn, K.: Data Structures and Algorithms. Springer, Berlin (1984) Google Scholar
  35. [MohPo93]
    Mohar, B., Poljak, S.: Eigenvalues in combinatorial optimization. In: Brualdi, R., Friedland, S., Klee, V. (eds.) Combinatorial and Graph-Theoretic Problems in Linear Algebra, pp. 107–151. Springer, New York (1993) CrossRefGoogle Scholar
  36. [NijWi78]
    Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms, 2nd edn. Academic Press, New York (1978) zbMATHGoogle Scholar
  37. [Ore51]
    Ore, O.: A problem regarding the tracing of graphs. Elem. Math. 6, 49–53 (1951) zbMATHMathSciNetGoogle Scholar
  38. [Pap94]
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994) zbMATHGoogle Scholar
  39. [PapSt82]
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice Hall, Englewood Cliffs (1982) zbMATHGoogle Scholar
  40. [Ral81]
    Ralston, A.: A new memoryless algorithm for de Bruijn sequences. J. Algorithms 2, 50–62 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  41. [Rue86]
    Rueppel, R.: Analysis and Design of Stream Ciphers. Springer, New York (1986) zbMATHCrossRefGoogle Scholar
  42. [SchwW78]
    Schwenk, A.J., Wilson, R.: On the eigenvalues of a graph. In: Beineke, L., Wilson, R. (eds.) Selected Topics in Graph Theory, pp. 307–336. Academic Press, London (1978) Google Scholar
  43. [Sip06]
    Sipser, K.: Introduction to the Theory of Computation, 2nd edn. Thompson, Boston (2006) zbMATHGoogle Scholar
  44. [SysDK83]
    Syslo, M.M., Deo, N., Kowalik, J.S.: Discrete Optimization Algorithms. Prentice Hall, Englewood Cliffs (1983) zbMATHGoogle Scholar
  45. [Tur36]
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42, 230–265 (1936) CrossRefMathSciNetGoogle Scholar
  46. [Wir76]
    Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall, Englewood Cliffs (1976) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dieter Jungnickel
    • 1
  1. 1.Institut für MathematikUniversität AugsburgAugsburgGermany

Personalised recommendations