A Hard Problem: The TSP

  • Dieter Jungnickel
Part of the Algorithms and Computation in Mathematics book series (AACIM, volume 5)


In this book, we have concentrated on those optimization problems which allow efficient (that is, polynomial time) algorithms. In contrast, the final chapter deals with an archetypical NP-complete problem: the travelling salesman problem already introduced in Chap.  1. It is one of the most famous and important problems in all of combinatorial optimization—with manyfold applications in such diverse areas as logistics, genetics, telecommunications, and neuroscience—and has been the subject of extensive study for about 60 years. We saw in Chap.  2 that no efficient algorithms are known for NP-complete problems, and that it is actually quite likely that no such algorithms can exist. Now we address the question of how such hard problems—which regularly occur in practical applications—might be approached: one uses, for instance, approximation techniques, heuristics, relaxations, post-optimization, local search, and complete enumeration. We shall explain these methods only for the TSP, but they are typical for dealing with hard problems in general. We will also brie y explain the idea of a further extremely important approach—via polyhedra—to solving hard problems and present a list of notable large scale TSPs which were solved to optimality.


Minimal Span Tree Travel Salesman Problem Large Instance Local Search Algorithm Hamiltonian Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [AarLe97]
    Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Wiley, New York (1997) zbMATHGoogle Scholar
  2. [AppBCC95]
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP (A preliminary report). DIMACS Technical Report 95-05 (1995) Google Scholar
  3. [AppBCC98]
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems. Doc. Math. III, 645–656 (1998) (Extra Volume ICM 1998) Google Scholar
  4. [AppBCC01]
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: TSP cuts which do not conform to the template paradigm. In: Jünger, M., Naddef, D. (eds.) Computational Combinatorial Optimization, pp. 261–304. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  5. [AppBCC03]
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems. Math. Program. 97B, 91–153 (2003) Google Scholar
  6. [AppBCC04]
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde (2004). Available at
  7. [AppBCC06]
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006) zbMATHGoogle Scholar
  8. [Aro98]
    Arora, S.: Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. J. Assoc. Comput. Mach. 45, 753–782 (1998) zbMATHCrossRefGoogle Scholar
  9. [AroSa02]
    Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. In: Proc. 33rd IEEE Symp. on Foundations of Computer Science, pp. 2–13 (1992) Google Scholar
  10. [AroLMS92]
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: Proc. 33th IEEE Symp. on Foundations of Computer Science, pp. 14–23 (1992) Google Scholar
  11. [BabFLS91]
    Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proc. 23rd ACM Symp. on Theory of Computing, pp. 21–31 (1991) Google Scholar
  12. [BabFL91]
    Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has two-prover interactive protocols. Comput. Complex. 1, 3–40 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  13. [BalFi93]
    Balas, E., Fischetti, M.: A lifting procedure for the asymmetric traveling salesman polytope and a large new class of facets. Math. Program. 58, 325–352 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  14. [BalXu91]
    Balas, E., Xue, J.: Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs. SIAM J. Comput. 20, 209–221 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  15. [BalYu86]
    Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput. 15, 1054–1068 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  16. [Ben90]
    Bentley, J.L.: Experiments on traveling salesman heuristics. In: Proc. First SIAM Symp. on Discr. Algorithms, pp. 91–99 (1990) Google Scholar
  17. [BlaSh89]
    Bland, R.G., Shallcross, D.F.: Large traveling salesman problems arising from experiments in X-ray crystallography: A preliminary report on computation. Oper. Res. Lett. 8, 125–128 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  18. [BoeFW07]
    Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G., Widmayer, P.: On the approximability of TSP on local modifications of optimally solved instances. Algorithmic Oper. Res. 2, 83–93 (2007) MathSciNetzbMATHGoogle Scholar
  19. [BoeHS11]
    Böckenhauer, H.-J., Hromkovič, J., Sprock, A.: Knowing all optimal solutions does not help for TSP reoptimization. In: Springer Lecture Notes in Computer Science, vol. 6610, pp. 7–15 (2011) Google Scholar
  20. [CamFT89]
    Carpaneto, G., Fischetti, M., Toth, P.: New lower bounds for the symmetric travelling salesman problem. Math. Program. 45, 233–254 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  21. [ChaGK06]
    Charikar, M., Hoemans, M.X., Karloff, H.: On the integrality ratio for the asymmetric traveling salesman problem. Math. Oper. Res. 31, 245–252 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  22. [Chr76]
    Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Report 388, Grad. School of Ind. Admin., Carnegie-Mellon University (1976) Google Scholar
  23. [Coo12]
    Cook, W.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2011) Google Scholar
  24. [CorNe78]
    Cornuejols, G., Nemhauser, G.L.: Tight bounds for Christofides’ traveling salesman heuristic. Math. Program. 14, 116–121 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  25. [Cro58]
    Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6, 791–812 (1958) MathSciNetCrossRefGoogle Scholar
  26. [CroPa80]
    Crowder, H., Padberg, M.W.: Solving large-scale symmetric travelling salesman problems to optimality. Manag. Sci. 26, 495–509 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  27. [DanFJ54]
    Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-salesman problem. Oper. Res. 2, 393–410 (1954) MathSciNetCrossRefGoogle Scholar
  28. [DeiWo00]
    Deĭneko, V.G., Woeginger, G.: A study of exponential neighborhoods for the travelling salesman problem and for the quadratic assignment problem. Math. Program. 87, 519–542 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  29. [Due93]
    Dueck, G.: New optimization heuristics: the great deluge algorithm and record-to-record travel. J. Comput. Phys. 104, 86–92 (1993) zbMATHCrossRefGoogle Scholar
  30. [DueSc90]
    Dueck, G., Scheuer, T.: Threshold accepting: A general purpose optimization algorithm appearing superior to simulating annealing. J. Comput. Phys. 90, 161–175 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  31. [Fie94]
    Fiechter, C.-N.: A parallel tabu search algorithm for large traveling salesman problems. Discrete Appl. Math. 51, 243–267 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  32. [Fis81]
    Fisher, M.L.: The Langrangian method for solving integer programming problems. Manag. Sci. 27, 1–18 (1981) zbMATHCrossRefGoogle Scholar
  33. [GilPo68]
    Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968) MathSciNetzbMATHCrossRefGoogle Scholar
  34. [Gro80]
    Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-city problem. Math. Program. Stud. 12, 61–77 (1980) zbMATHCrossRefGoogle Scholar
  35. [Gro84]
    Grötschel, M.: Developments in combinatorial optimization. In: Jäger, W., Moser, J., Remmert, R. (eds.) Perspectives in Mathematics: Anniversary of Oberwolfach 1984, pp. 249–294. Birkhäuser, Basel (1984) Google Scholar
  36. [GroHo91]
    Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman problems. Math. Program. 51, 141–202 (1991) zbMATHCrossRefGoogle Scholar
  37. [GroJR91]
    Grötschel, M., Jünger, M., Reinelt, G.: Optimal control of plotting and drilling machines: a case study. ZOR, Z. Oper.-Res. 35, 61–84 (1991) zbMATHGoogle Scholar
  38. [GroLS93]
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Berlin (1993) zbMATHCrossRefGoogle Scholar
  39. [GusPa02]
    Gutin, G., Punnen, A.: The Traveling Salesman Problem and Its Variations. Kluwer, Dordrecht (2002) zbMATHGoogle Scholar
  40. [Hal86]
    Hall, M.: Combinatorial Theory, 2nd edn. Wiley, New York (1986) zbMATHGoogle Scholar
  41. [HelKa70]
    Held, M., Karp, R.: The travelling salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970) MathSciNetzbMATHCrossRefGoogle Scholar
  42. [HelKa71]
    Held, M., Karp, R.: The travelling salesman problem and minimum spanning trees II. Math. Program. 1, 6–25 (1971) MathSciNetzbMATHCrossRefGoogle Scholar
  43. [HelWC74]
    Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Math. Program. 6, 62–88 (1974) MathSciNetzbMATHCrossRefGoogle Scholar
  44. [Hel00]
    Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  45. [LawLRS85]
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, New York (1985) Google Scholar
  46. [LecRe89]
    Leclerc, M., Rendl, F.: Constrained spanning trees and the travelling salesman problem. Eur. J. Oper. Res. 39, 96–102 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  47. [LenRi75]
    Lenstra, J.K., Rinnooy Kan, A.H.G.: Some simple applications of the travelling salesman problem. Oper. Res. Q. 26, 717–733 (1975) zbMATHCrossRefGoogle Scholar
  48. [Lin65]
    Lin, S.: Computer solutions of the travelling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965) zbMATHGoogle Scholar
  49. [LinKe73]
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling salesman problem. Oper. Res. 31, 498–516 (1973) MathSciNetCrossRefGoogle Scholar
  50. [LitMSK63]
    Little, J.D.C., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for the travelling salesman problem. Oper. Res. 11, 972–989 (1963) zbMATHCrossRefGoogle Scholar
  51. [MarOF91]
    Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling salesman problem. Complex Syst. 5, 299–326 (1991) MathSciNetzbMATHGoogle Scholar
  52. [Mic92]
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1992) zbMATHGoogle Scholar
  53. [MicAK07]
    Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search. Springer, Berlin (2007) zbMATHGoogle Scholar
  54. [Mit99]
    Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for Euclidean TSP, k-MST, and related problems. SIAM J. Comput. 28, 1298–1309 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  55. [MuhGK81]
    Mühlenbein, H., Gorges-Schleuter, M., Krämer, O.: Evolution algorithms in combinatorial optimization. Parallel Comput. 7, 65–85 (1988) zbMATHCrossRefGoogle Scholar
  56. [Nad90]
    Naddef, D.: Handles and teeth in the symmetric travelling salesman polytope. In: Cook, W., Seymour, P.D. (eds.) Polyhedral Combinatorics, pp. 61–74. Am. Math. Soc., Providence (1990) Google Scholar
  57. [Or76]
    Or, I.: Traveling salesman-type combinatorial problems and their relation to the logistics of regional blood banking. Ph.D. thesis, Northwestern University, Evanston, IL (1976) Google Scholar
  58. [OrlSh04]
    Orlin, J.B., Sharma, D.: Extended neighborhood: definition and characterization. Math. Program. 101, 537–559 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  59. [PadHo80]
    Padberg, M.W., Hong, S.: On the symmetric travelling salesman problem: A computational study. Math. Program. Stud. 12, 78–107 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  60. [PadRa74]
    Padberg, M.W., Rao, M.R.: The travelling salesman problem and a class of polyhedra of diameter two. Math. Program. 7, 32–45 (1974) MathSciNetzbMATHCrossRefGoogle Scholar
  61. [PadRi87]
    Padberg, M.W., Rinaldi, G.: Optimization of a 532-city symmetric travelling salesman problem. Oper. Res. Lett. 6, 1–7 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  62. [PadRi91]
    Padberg, M.W., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale travelling salesman problems. SIAM Rev. 33, 60–100 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  63. [PadSu91]
    Padberg, M.W., Sung, T.-Y.: An analytical comparison of different formulations of the travelling salesman problem. Math. Program. 52, 315–357 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  64. [Pap78]
    Papadimitriou, C.H.: The adjacency relation on the traveling salesman polytope is NP-complete. Math. Program. 14, 312–324 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  65. [Pap92]
    Papadimitriou, C.H.: The complexity of the Lin-Kernighan heuristic for the traveling salesman problem. SIAM J. Comp. 21, 450–465 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  66. [PapSt77]
    Papadimitriou, C.H., Steiglitz, K.: On the complexity of local search for the travelling salesman problem. SIAM J. Comput. 6, 76–83 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  67. [PapSt78]
    Papadimitriou, C.H., Steiglitz, K.: Some examples of difficult travelling salesman problems. Oper. Res. 26, 434–443 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  68. [PapSt82]
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice Hall, Englewood Cliffs (1982) zbMATHGoogle Scholar
  69. [PapVe06]
    Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. Combinatorica 26, 101–120 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  70. [PapYa93]
    Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances 1 and 2. Math. Oper. Res. 18, 1–11 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  71. [Pul83]
    Pulleyblank, W.R.: Polyhedral combinatorics. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 312–345. Springer, Berlin (1983) CrossRefGoogle Scholar
  72. [Rei94]
    Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications. Springer, Berlin (1994) Google Scholar
  73. [RosSL77]
    Rosenkrantz, D.J., Stearns, E.A., Lewis, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6, 563–581 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  74. [SahGo76]
    Sahni, S., Gonzales, T.: P-complete approximation problems. J. Assoc. Comput. Mach. 23, 555–565 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  75. [Schr03]
    Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin (2003) (in 3 volumes) zbMATHGoogle Scholar
  76. [Sha79]
    Shapiro, J.F.: A survey of Langrangian techniques for discrete optimization. Ann. Discrete Math. 5, 113–138 (1979) MathSciNetzbMATHCrossRefGoogle Scholar
  77. [ShmWi90]
    Shmoys, D.B., Williamson, D.P.: Analyzing the Held-Karp-TSP bound: A monotonicity property with application. Inf. Process. Lett. 35, 281–285 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  78. [Sho85]
    Shor, N.Z.: Minimization Methods for Non-Differentiable Functions. Springer, Berlin (1985) zbMATHCrossRefGoogle Scholar
  79. [SysDK83]
    Syslo, M.M., Deo, N., Kowalik, J.S.: Discrete Optimization Algorithms. Prentice Hall, Englewood Cliffs (1983) zbMATHGoogle Scholar
  80. [VolJo82]
    Volgenant, T., Jonker, R.: A branch and bound algorithm for the symmetric travelling salesman problem based on the 1-tree relaxation. Eur. J. Oper. Res. 9, 83–89 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
  81. [Woe03]
    Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Springer Lect. Notes Comput. Sci., vol. 2570, pp. 185–207 (2003) Google Scholar
  82. [Woe08]
    Woeginger, G.J.: Open problems around exact algorithms. Discrete Appl. Math. 156, 397–405 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  83. [Wol80]
    Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. Math. Program. Stud. 13, 121–134 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  84. [Zuc96]
    Zuckerman, D.: On unapproximable versions of NP-complete problems. SIAM J. Comput. 25, 1293–1304 (1996) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dieter Jungnickel
    • 1
  1. 1.Institut für MathematikUniversität AugsburgAugsburgGermany

Personalised recommendations