Skip to main content

Lemaître, the Big Bang and the Quantum Universe

  • Chapter
  • First Online:
Georges Lemaître: Life, Science and Legacy

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 395))

  • 1191 Accesses

Abstract

Lemaître’s work on the geometric nature of singularities and his speculations concerning the applications of quantum physics to cosmology are confronted with later achievements in these fields. His works on the global structure of the de Sitter solution and the appearance of “non-regular” points in the Schwarzschild solution led to the conclusion that the “vanishing of the radius of the universe” is a generic property of cosmological models. This conclusion was strengthened when Lemaître proved that, against Einstein’s intuition, space anisotropy (in Bianchi I models) does not remove the singularity. This is why Lemaître regarded the initial singularity as a “geometric support” of his Primeval Atom hypothesis. This hypothesis was not yet a quantum gravity idea (in the present sense of this expression), but it was certainly an application of quantum physics to the early stages of cosmic evolution. The beginning itself is aspatial and atemporal, and both space and time emerge only when the simplicity of the Primeval Atom gives place to physical multiplicity. How do the problems with which Lemaître struggled appear in the light of the present state of cosmological research?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hilbert proposed the following criterion: “By [non-regular point] I mean that a line element or a gravitational field g μν is regular at a point if it is possible to introduce by a reversible, one-one transformation a coordinate system, such that in this coordinate system the corresponding functions g' μν are regular at that point, i.e., they are continuous and arbitrarily differentiable at the point and in a neighbourhood of the point, and the determinant g' is different from 0” (quoted from (Earman 1995, p. 6)). This seemingly correct criterion does not distinguish between genuine singularities and coordinate singularities; more on this topic can be found in Earman (1995).

  2. 2.

    In Einstein’s interpretation of Mach’s Principle the metric structure of space-time should be determined by the mass distribution in the universe.

  3. 3.

    In Einstein’s words, this singularity is only an “apparent violation of continuity, as can readily be shown by a suitable change of coordinates”; see Earman and Eisenstaedt (1999).

  4. 4.

    “Thus, he concluded, with the cautionary proviso of ‘until proof to the contrary’, that de Sitter’s solution must be regarded as having a genuine singularity and thus this ‘solution does not accord with the field equations for any choice of coordinates’” (Earman and Eisenstaedt 1999, p. 193).

  5. 5.

    The typescript is preserved in the Lemaître archive in Louvain-la-Neuve.

  6. 6.

    It was defined as T = ρ−3p in units in which c = 1; Lemaître called T invariant density.

  7. 7.

    Lemaître qualifies this solution as “probablement nouvelle” (Lemaître 1933); in fact, it was obtained, in 1922, by Marcel Brillouin with the help of a different method (see Lambert 2000, p. 83).

  8. 8.

    At Lemaître’s archive in Louvain-la-Neuve his calculations of all solutions are preserved (for details see Godart and Heller (1985, p. 57)). At that time Lemaître did not know that these solutions were already published by Alexander Friedmann.

  9. 9.

    Caustics are regions in which families of geodesics do not form smooth space-time submanifolds; they are singularities of families of geodesics rather than singularities of space-time.

  10. 10.

    A Cauchy surface is a spacelike hypersurface that no inextendible history of a particle or photon (i.e., no timelike or null curve) in a given space-time intersects more than once. A Cauchy surface is a global Cauchy surface if every such history in a given space-time intersects it exactly once.

  11. 11.

    World models with non-compact time slices are called open world models.

  12. 12.

    Technically, a trapped surface is a compact two-dimensional submanifold of space-time such that the expansion of both outgoing and ingoing future directed null geodesics, that are orthogonal to this submanifold, is everywhere negative. Physically, this means that a trapped surface is formed provided there is enough matter accumulated in a small region of space-time. Such situations are expected to occur in gravitational collapse.

  13. 13.

    Space-time is globally hyperbolic if it has a global Cauchy surface.

  14. 14.

    The rest of the present section is based on this reference, and all quotations are taken from it.

References

  • Bojowald, M. (2007). Singularities in quantum gravity, arXiv:gr-qc/0702144.

    Google Scholar 

  • Clarke, C. S. J. (1998). Generalized hyperbolicity in singular space-times, Class. Quantum Gravity, 15(1998), 975–984.

    Article  MATH  Google Scholar 

  • Craps, B. (2006). Big bang models in string theory, arXiv:hep-th/0605199.

    Google Scholar 

  • de Sitter, W. (1917). On Einstein’s theory of gravitation and its astronomical consequences. Third paper, Monthly Notices of the Royal Astronomical Society, 78, 3–28.

    Google Scholar 

  • DeWitt, B. S. (1967). Quantum theory of gravity. I. The canonical theory. Physical Review, 160, 1113–1148.

    Article  ADS  MATH  Google Scholar 

  • Earman, J. (1995). Bangs, Crunches, Whimpers, and Shrieks. Singularities and acausalities in relativistic spacetimes. New York/Oxford: Oxford University Press.

    Google Scholar 

  • Earman, J., & Eisenstaedt, J. (1999). Einstein and singularities. Studies in History and Philosophy of Science, 30, 185–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Eddington, A. S. (1923). The mathematical theory of relativity. Cambridge: At the University Press (reprinted in 1965).

    MATH  Google Scholar 

  • Einstein, A. (1915). Erklärung der Perihelbewebung des Merkur aus der allgemeinen Relativitätstheorie, Sitzungsber. Preuss Akad Wiss 47(2), 831–839.

    Google Scholar 

  • Einstein, A. (1931). Zum kosmologischen Problem der allgemeinen Relatvitätstheorie, Sitzungsber. Preuss Akad Wiss phys-math Kl 235–237.

    Google Scholar 

  • Godart, O., & Heller, M. (1985). Cosmology of Lemaître. Tucson: Pachart.

    Google Scholar 

  • Hawking, S. W. (1965). Occurrence of singularities in open universes. Physics Letters, 15, 689–690.

    Article  MathSciNet  Google Scholar 

  • Hawking, S. W., & Ellis, G. F. R. (1973). The large scale structure of space-time. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Hilbert, D. (1917). Die Grundlagen der Physik: Zweiter Mitteilung, Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematische-Physikalische Klasse. Nachrichten, 55–76.

    Google Scholar 

  • Kragh, H. (1996). Cosmology and controversy. The historical development of two theories of the universe. Princeton: Princeton University Press.

    Google Scholar 

  • Lambert, D. (2000). Un atome d'univers. La vie et l’oeuvre de Georges Lemaître. Bruxelles: Lessius-Racine.

    Google Scholar 

  • Lemaître, G. (1925). Note on de Sitter’s universe. Journal of Mathematics and Physics, 4, 37–41.

    Google Scholar 

  • Lemaître, G. (1927). Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nèbuleuses extra-galactiques, Annales de la Societé Scientifiques de Bruxelles, ser A, 47, 49–59.

    Google Scholar 

  • Lemaître, G. (1931a). A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Monthly Notices of the Royal Astronomical Society, 91, 483–489.

    ADS  MATH  Google Scholar 

  • Lemaître, G. (1931b). The beginning of the world from the point of view of quantum theory. Nature, 127(3210), 706.

    Article  ADS  MATH  Google Scholar 

  • Lemaître, G. (1933). L’Univers en expansion. Annals de la Societe Scientifique de Bruxelles Series A, 53, 51–85.

    ADS  Google Scholar 

  • Lemaître, G. (1958a). Rencontres avec Einstein, Revue des Questions Scientifiques, janvier 1958, 129–132.

    Google Scholar 

  • Lemaître, G. (1958b). The primaeval atom hypothesis and the problem of the clusters of galaxies. In R. Stoops (Ed.), La Structure et l’Évolution de l’Univers (pp. 1–25). Bruxelles: Institut International de Physique Solvay.

    Google Scholar 

  • Lemaître, G. (1960). L’étrangeté de l’Univers, La Revue Generale Belge, juin 1960, 1–14.

    Google Scholar 

  • Lemaître, G. (1978). Un travail inconnu de Georges Lemaître: L’Univers, problème accessible à la science humaine, published by O. Godart and M. Heller, Revue d’Histoire des Sciences, 31, 345–359.

    Google Scholar 

  • Lemaître, G. (1996). The expanding universe. In M. Heller (Ed.), Lemaître, big bang and the quantum universe. Tucson: Pachart.

    Google Scholar 

  • Penrose, R. (1965). Gravitational collapse and space-time singularities. Physical Review Letters, 14, 57–59.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Rovelli, C. (2004). Quantum gravity. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Schwarzschild, K. (1916a). Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin. Phys-Math Klasse, 189–196.

    Google Scholar 

  • Schwarzschild, K. (1916b). Über das Gravitationsfeld einer Kugel aus incompressibler Flüssigkeit, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin. Phys-Math Klasse, 424–434.

    Google Scholar 

  • Tipler, F. J., Clarke, C. J. S., & Ellis, G. F. R. (1980). Singularities and horizons—A review article. In A. Held (Ed.), General relativity and gravitation (Vol. 2, pp. 97–206). New York/London: Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heller, M. (2012). Lemaître, the Big Bang and the Quantum Universe. In: Holder, R., Mitton, S. (eds) Georges Lemaître: Life, Science and Legacy. Astrophysics and Space Science Library, vol 395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32254-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32254-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32253-2

  • Online ISBN: 978-3-642-32254-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics