Advertisement

Lemaître, the Big Bang and the Quantum Universe

  • Michael Heller
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 395)

Abstract

Lemaître’s work on the geometric nature of singularities and his speculations concerning the applications of quantum physics to cosmology are confronted with later achievements in these fields. His works on the global structure of the de Sitter solution and the appearance of “non-regular” points in the Schwarzschild solution led to the conclusion that the “vanishing of the radius of the universe” is a generic property of cosmological models. This conclusion was strengthened when Lemaître proved that, against Einstein’s intuition, space anisotropy (in Bianchi I models) does not remove the singularity. This is why Lemaître regarded the initial singularity as a “geometric support” of his Primeval Atom hypothesis. This hypothesis was not yet a quantum gravity idea (in the present sense of this expression), but it was certainly an application of quantum physics to the early stages of cosmic evolution. The beginning itself is aspatial and atemporal, and both space and time emerge only when the simplicity of the Primeval Atom gives place to physical multiplicity. How do the problems with which Lemaître struggled appear in the light of the present state of cosmological research?

Keywords

Quantum Gravity Singularity Theorem Null Geodesic World Model Cauchy Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bojowald, M. (2007). Singularities in quantum gravity, arXiv:gr-qc/0702144.Google Scholar
  2. Clarke, C. S. J. (1998). Generalized hyperbolicity in singular space-times, Class. Quantum Gravity, 15(1998), 975–984.zbMATHCrossRefGoogle Scholar
  3. Craps, B. (2006). Big bang models in string theory, arXiv:hep-th/0605199.Google Scholar
  4. de Sitter, W. (1917). On Einstein’s theory of gravitation and its astronomical consequences. Third paper, Monthly Notices of the Royal Astronomical Society, 78, 3–28.Google Scholar
  5. DeWitt, B. S. (1967). Quantum theory of gravity. I. The canonical theory. Physical Review, 160, 1113–1148.ADSzbMATHCrossRefGoogle Scholar
  6. Earman, J. (1995). Bangs, Crunches, Whimpers, and Shrieks. Singularities and acausalities in relativistic spacetimes. New York/Oxford: Oxford University Press.Google Scholar
  7. Earman, J., & Eisenstaedt, J. (1999). Einstein and singularities. Studies in History and Philosophy of Science, 30, 185–235.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Eddington, A. S. (1923). The mathematical theory of relativity. Cambridge: At the University Press (reprinted in 1965).zbMATHGoogle Scholar
  9. Einstein, A. (1915). Erklärung der Perihelbewebung des Merkur aus der allgemeinen Relativitätstheorie, Sitzungsber. Preuss Akad Wiss 47(2), 831–839.Google Scholar
  10. Einstein, A. (1931). Zum kosmologischen Problem der allgemeinen Relatvitätstheorie, Sitzungsber. Preuss Akad Wiss phys-math Kl 235–237.Google Scholar
  11. Godart, O., & Heller, M. (1985). Cosmology of Lemaître. Tucson: Pachart.Google Scholar
  12. Hawking, S. W. (1965). Occurrence of singularities in open universes. Physics Letters, 15, 689–690.MathSciNetCrossRefGoogle Scholar
  13. Hawking, S. W., & Ellis, G. F. R. (1973). The large scale structure of space-time. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  14. Hilbert, D. (1917). Die Grundlagen der Physik: Zweiter Mitteilung, Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematische-Physikalische Klasse. Nachrichten, 55–76.Google Scholar
  15. Kragh, H. (1996). Cosmology and controversy. The historical development of two theories of the universe. Princeton: Princeton University Press.Google Scholar
  16. Lambert, D. (2000). Un atome d'univers. La vie et l’oeuvre de Georges Lemaître. Bruxelles: Lessius-Racine.Google Scholar
  17. Lemaître, G. (1925). Note on de Sitter’s universe. Journal of Mathematics and Physics, 4, 37–41.Google Scholar
  18. Lemaître, G. (1927). Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nèbuleuses extra-galactiques, Annales de la Societé Scientifiques de Bruxelles, ser A, 47, 49–59.Google Scholar
  19. Lemaître, G. (1931a). A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Monthly Notices of the Royal Astronomical Society, 91, 483–489.ADSzbMATHGoogle Scholar
  20. Lemaître, G. (1931b). The beginning of the world from the point of view of quantum theory. Nature, 127(3210), 706.ADSzbMATHCrossRefGoogle Scholar
  21. Lemaître, G. (1933). L’Univers en expansion. Annals de la Societe Scientifique de Bruxelles Series A, 53, 51–85.ADSGoogle Scholar
  22. Lemaître, G. (1958a). Rencontres avec Einstein, Revue des Questions Scientifiques, janvier 1958, 129–132.Google Scholar
  23. Lemaître, G. (1958b). The primaeval atom hypothesis and the problem of the clusters of galaxies. In R. Stoops (Ed.), La Structure et l’Évolution de l’Univers (pp. 1–25). Bruxelles: Institut International de Physique Solvay.Google Scholar
  24. Lemaître, G. (1960). L’étrangeté de l’Univers, La Revue Generale Belge, juin 1960, 1–14.Google Scholar
  25. Lemaître, G. (1978). Un travail inconnu de Georges Lemaître: L’Univers, problème accessible à la science humaine, published by O. Godart and M. Heller, Revue d’Histoire des Sciences, 31, 345–359.Google Scholar
  26. Lemaître, G. (1996). The expanding universe. In M. Heller (Ed.), Lemaître, big bang and the quantum universe. Tucson: Pachart.Google Scholar
  27. Penrose, R. (1965). Gravitational collapse and space-time singularities. Physical Review Letters, 14, 57–59.MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. Rovelli, C. (2004). Quantum gravity. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  29. Schwarzschild, K. (1916a). Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin. Phys-Math Klasse, 189–196.Google Scholar
  30. Schwarzschild, K. (1916b). Über das Gravitationsfeld einer Kugel aus incompressibler Flüssigkeit, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin. Phys-Math Klasse, 424–434.Google Scholar
  31. Tipler, F. J., Clarke, C. J. S., & Ellis, G. F. R. (1980). Singularities and horizons—A review article. In A. Held (Ed.), General relativity and gravitation (Vol. 2, pp. 97–206). New York/London: Plenum Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Copernicus Center for Interdisciplinary StudiesKrakowPoland

Personalised recommendations