‘The Wildest Speculation of All’: Lemaître and the Primeval-Atom Universe

Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 395)

Abstract

Although there is no logical connection between the expanding universe and the idea of a big bang, from a historical perspective the two concepts were intimately connected. Four years after his pioneering work on the expanding universe, Lemaître suggested that the entire universe had originated in a kind of explosive act from what he called a primeval atom and which he likened to a huge atomic nucleus. His theory of 1931 was the first realistic finite-age model based upon relativistic cosmology, but it presupposed a material proto-universe and thus avoided an initial singularity. What were the sources of Lemaître’s daring proposal? Well aware that his new cosmological model needed to have testable consequences, he argued that the cosmic rays were fossils of the original radioactive explosion. However, this hypothesis turned out to be untenable. The first big-bang model ever was received with a mixture of indifference and hostility. Why? The answer is not that contemporary cosmologists failed to recognize Lemaître’s genius, but rather that his model was scientifically unconvincing. Although Lemaître was indeed the father of big-bang cosmology, his brilliant idea was only turned into a viable cosmological theory by later physicists.

Keywords

Cosmological Constant Initial Singularity Closed Universe Relativistic Cosmology Cosmological Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature

  1. Barnes, E. W. (1933). Scientific theory and religion. Cambridge: Cambridge University Press.MATHGoogle Scholar
  2. Douglas, A. V. (1956). The life of Arthur Stanley Eddington. London: Thomas Nelson and Sons.MATHGoogle Scholar
  3. Eddington, A. S. (1930). Space and its properties. Nature, 125, 849–850.ADSCrossRefGoogle Scholar
  4. Epstein, P. S. (1934). The expansion of the universe and the intensity of cosmic rays. Proceedings of the National Academy of Sciences USA, 20, 67–78.ADSCrossRefGoogle Scholar
  5. Heckmann, O. (1932). Die Ausdehnung der Welt in ihrer Abhängigkeit von der Zeit. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse (pp. 97–106).Google Scholar
  6. Hetherington, N. S. (1973). The delayed response to suggestions of an expanding universe. The Journal of the British Astronomical Association, 84, 22–28.ADSGoogle Scholar
  7. Hubble, E. P. (1936). Effect of red shifts on the distribution of nebulae. The Astrophysical Journal, 84, 517–554.ADSMATHCrossRefGoogle Scholar
  8. Hubble, E. P. (1937). The observational approach to cosmology. Oxford: Clarendon.Google Scholar
  9. Jordan, P. (1936). Die Physik des 20. Jahrhunderts. Braunschweig: Vieweg.Google Scholar
  10. Jordan, P. (1937). Die physikalischen Weltkonstanten. Die Naturwissenschaften, 25, 513–517.ADSMATHCrossRefGoogle Scholar
  11. Kragh, H. (1996). Cosmology and controversy: The historical development of two theories of the universe. Princeton: Princeton University Press.Google Scholar
  12. Kragh, H. (2006). Let there be light: Cosmic photons prior to the microwave background. Acta Physica Polonica B, 37, 559–564.MathSciNetADSGoogle Scholar
  13. Kragh, H. (2007). Cosmic radioactivity and the age of the universe, 1900–1930. Journal for the History of Astronomy, 38, 393–412.ADSGoogle Scholar
  14. Kragh, H. (2008). Entropic creation: Religious contexts of thermodynamics and cosmology. Aldershot: Ashgate.Google Scholar
  15. Kragh, H., & Lambert, D. (2007). The context of discovery: Lemaître and the origin of the primeval-atom universe. Annals of Science, 64, 445–470.CrossRefGoogle Scholar
  16. Kragh, H., & Smith, R. W. (2003). Who discovered the expanding universe? History of Science, 41, 141–162.MathSciNetADSGoogle Scholar
  17. Lemaître, G. (1925). Note on de Sitter’s universe. Journal of Mathematics and Physics, 4, 188–192.MATHGoogle Scholar
  18. Lemaître, G. (1927). Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de Société Scientifique de Bruxelles, 47, 49–56.ADSGoogle Scholar
  19. Lemaître, G. (1929). La grandeur de l’espace. Revue des Questions Scientifiques, 15, 189–216.Google Scholar
  20. Lemaître, G. (1930). L’hypothèse de Millikan-Cameron dans un univers de rayon variable. Comptes Rendus Congrès National des Sciences Organisé par la Fédération Belge des Sociétés Scientifiques (pp. 180–182).Google Scholar
  21. Lemaître, G. (1931a). L’expansion de l’espace. Revue des Questions Scientifiques, 17, 391–440.Google Scholar
  22. Lemaître, G. (1931b). The expanding universe. Monthly Notices of the Royal Astronomical Society, 91, 490–501.ADSMATHGoogle Scholar
  23. Lemaître, G. (1931c). The beginning of the world from the point of view of quantum theory. Nature, 127, 706.ADSMATHCrossRefGoogle Scholar
  24. Lemaître, G. (1931d). Untitled discussion contribution. Nature, 128, 704–706.ADSCrossRefGoogle Scholar
  25. Lemaître, G. (1933). L’univers en expansion. Annales de Société Scientifique de Bruxelles, 53, 51–85.ADSGoogle Scholar
  26. Lemaître, G. (1946). L’Hypothèse de l’atome primitif: Essai de cosmogonie. Neuchâtel: Griffon.Google Scholar
  27. Lemaître, G. (1949a). The cosmological constant. In P. A. Schilpp (Ed.), Albert Einstein: Philosopher-scientist (pp. 439–456). La salle: Open Court.Google Scholar
  28. Lemaître, G. (1949b). Cosmological applications of relativity. Reviews of Modern Physics, 21, 357–366.MathSciNetADSMATHCrossRefGoogle Scholar
  29. Lemaître, G. (1949c). Rayons cosmiques et cosmologie. Gazette Astronomique (Anvers), 31, 3–14.Google Scholar
  30. Lemaître, G. (1950). Untitled book review. Annales d’Astrophysique, 13, 344–345.Google Scholar
  31. Lemaître, G. (1958). The primeval atom hypothesis and the problem of the clusters of galaxies. In R. Stoops (Ed.), La structure et l’évolution de l’univers (pp. 1–32). Brussels: Coudenberg.Google Scholar
  32. Lemaître, G., & Vallarta, M. S. (1933). On Compton’s latitude effect of cosmic radiation. Physical Review, 43, 87–91.ADSCrossRefGoogle Scholar
  33. Menzel, D. H. (1932). Blast of giant atom created our universe. Popular Science, 105, 28–29.Google Scholar
  34. Nussbaumer, H., & Bieri, L. (2009). Discovering the expanding universe. Cambridge: Cambridge University Press.Google Scholar
  35. Plaskett, J. S. (1933). The expansion of the universe. Journal of the Royal Astronomical Society of Canada, 27, 235–252.ADSGoogle Scholar
  36. Robertson, H. P. (1933). Relativistic cosmology. Reviews of Modern Physics, 5, 62–90.ADSCrossRefGoogle Scholar
  37. Tolman, R. C. (1932). Models of the physical universe. Science, 75, 367–373.ADSCrossRefGoogle Scholar
  38. Tolman, R. C. (1934). Relativity, thermodynamics and cosmology. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Centre for Science StudiesAarhus UniversityAarhusDenmark

Personalised recommendations