Advertisement

Methodology

  • Miloš Gregor
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The term “drought” has nowadays a large number of definitions and it is seen from different perspectives. Drought generally starts with a lack of rainfall. Its symptoms significantly affect the intensity of evapotranspiration. It affects the air and soil moisture, runoff characteristics of the surface- and groundwater. Definitions of drought we know relatively numerous, due to its temporal and spatial variability, as well as due to different ways of perception with regard to the purposes for which it is defined. The definitions of drought, which are used in practice, determine the start, end and eventually the intensity of the impacts on various assessed fields.

Keywords

Water Quality Groundwater Level Water Quality Monitoring Water Quality Assessment Meteorological Drought 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen GA, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, Rome, Italy, pp 78–86Google Scholar
  2. APHA (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington, 268 pGoogle Scholar
  3. Barcelona MJ, Gibb JP, Helfrich JA, Garske EE (1985) Practical guide for groundwater sampling. ISWS contract report 374. Illinois State Water Survey, Champaign, Illinois, 94 pGoogle Scholar
  4. Bartram J, Ballence R (1996) Water quality monitoring: a practical guide to the design and implementation of fresh water quality studies and monitoring programmes. Chapman & Hall, LondonGoogle Scholar
  5. Bates BC, Davies PK (1988) Effect of base flow separation procedures on surface runoff models. J Hydrol 103(3–4):309–322. doi: 10.1016/0022-1694(88)90140-0 Google Scholar
  6. Bavel CHM, Verlinden FJ (1956) Agricultural drought in North Carolina. North Carolina agricultural experiment station. Technical bulletin no. 122, 60 pGoogle Scholar
  7. Benetin J, Šoltész A (1988) Hydrologické charakteristiky vodného režimu pôd a ich výpočet. [In Slovak] (Hydrological characteristics of soil water regime and their calculation), In: Agromelio, Nitra, ČSVTS, pp 12–20Google Scholar
  8. Blinka P (2002) Metoda hodnocení sucha. [In Czech] (Method of drought assessment), In: XIV. Česko-slovenská bioklimatologická konference, Lednice na Moravě, pp 32–44, ISBN:80-85813-99-8Google Scholar
  9. Blumenstock G (1942) Drought in the United States analyzed by means of the theory of probability. Technical bulletin no. 819, U.S. Department of Agriculture, 5 pGoogle Scholar
  10. Boughton WC (1993) A hydrograph-based model for estimating water yield of ungauged catchments. Institute of engineers australia national conference. Pub. 93/14, pp 317–324Google Scholar
  11. Boussinesq J (1877) Essai sur la theories des eaux courantes. Memoires presentes par divers savants a l’Academic des Sciences de l’Institut National de France, Tome XXIII, No. 1Google Scholar
  12. Boussinesq J (1904) Recherches theoretique sur l’ecoulement des nappes d’eau infiltrees dans le sol et sur le debit des sources. J Math Pure Appl 10(5th Series):5–78Google Scholar
  13. Brádka J et al. (1961) Počasí na území Čech a Moravy v typických povětrnostních situacích. [In Czech] (Weather in Czech and Moravia in typical weather situations), HMÚ, Praha, 32 pGoogle Scholar
  14. Brázdil R, Kolář M, Žaloudík J (1985) Prostorové úhrny srážek na Moravě v období 1881–1980. [In Czech] (Spatial precipitation totals in Moravia in the period 1881–1980), Meteorologické zprávy, 38(3):87–92Google Scholar
  15. Brušková V (2007) Hodnotenie meteorologického sucha v povodí horného toku Torysy. [In Slovak with English abstract and summary] (Evaluation of meteorological drought in the upper part of Torysa catchment). Podzemná voda 13(2):169–176, SAH, BratislavaGoogle Scholar
  16. Brutsaert W, Nieber JL (1977) Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour Res 13(3):637–643. doi: 10.1029/WR013i003p00637 CrossRefGoogle Scholar
  17. Chapman D (1996) Water quality assessments—a guide to use of biota, sediments and water in environmental monitoring, 2nd edn. University Press, Cambridge, 609 p. ISBN:0-419-21590-5CrossRefGoogle Scholar
  18. Chapman TG (1991) Comment on evaluation of automated techniques for base flow and recession analyzes, by RJ Nathan and TA McMahon. Water Resour Res 27(7):1783–1784. doi: 10.1029/91WR01007 CrossRefGoogle Scholar
  19. Chapman TG, Maxwell AI (1996) Baseflow separation—comparison of numerical methods with tracer experiments. Institute engineers australia national conference, Pub. 96/05, pp 539–545Google Scholar
  20. CIS (1987) Methods for bioindication and biotesting in natural waters. (USSR state committee for hydrometeorology and environmental control), vol 1. Hydrochemical Institute, Leningrad, 152 pGoogle Scholar
  21. Condra GE (1944) Drought, its effects and measures of control in Nebraska. Nebraska conservation bulletin no. 25, University of Nebraska, Conservation and Survey Division, p 1Google Scholar
  22. Cooper HH, Rorabaugh MI (1963) Groundwater movements and bank storage due to flood stages in surface streams. USGS water supply paper 1536-J, pp 343–366Google Scholar
  23. Coutagne A (1948) Les variations de débit en période non influencée par les précipitations. La Houulle Blanche, 3:416–436CrossRefGoogle Scholar
  24. Day JBW, Roda JC (1978) The effects of the 1975–76 drought on groundwater and aquifers. Proc R Soc Lond Seri A 363:55–68Google Scholar
  25. Demeterová D (2000) Analýza hydrologického sucha. [In Slovak with English abstract] (Hydrology drought analysis), In: Conference Proceedings Bioklimatológia a životné prostredie, XIII. Bioklimatologická konferencia, SBkS a ČBkS, Košice, 17 pGoogle Scholar
  26. Drlička R (2004) Sucho na Morave a ve Slezsku. [In Czech with English abstract] (Drought in Moravia and Silesia), Master thesis, Přírodovědecká fakulta, Masarikova univerzita, Brno, 60 pGoogle Scholar
  27. EC DG Environment (2003) Agenda 4: analysis and monitoring of priority substances. Background concentrations. Brussels, p 14Google Scholar
  28. Eitzinger J, Trnka M (2006) Ein Trockenschadenmodell für das österreichische Grünland. Bericht, 2. Klimaseminar “Klimaforschung für die Grünlandwirtschaft” der HBLFA Raumberg-Gumpenstein. Gumpenstein, ISBN:3-901980-87-3Google Scholar
  29. Eltahir EAB, Yeh PJF (1999) On the asymmetric response of aquifer water level to floods and droughts in Illinois. Water Resour Res 35(4):1199–1217. doi: 10.1029/1998WR900071
  30. EPA (1998) National water quality inventoryGoogle Scholar
  31. EPA (2000) Nutrient criteria technical guidance manual: rivers and streams. EPA 822/B-00/002. p 141Google Scholar
  32. Fendeková M, Ženišová Z, Demeterová B, Fendek M, Fľaková R, Gavurnik J, Krčma D, Macura V, Némethy P, Slivová V (2010) Hydrogeologické sucho. [In Slovak with English summary] (Hydrogeological drought). Comenius University, Bratislava, 180 p. ISBN:978-80-969342-7-0Google Scholar
  33. Feng LH, Zhang XC (2005) Quantitative expression on drought magnitude and disaster intensity. Nat Hazards Earth Syst Sci 5:495–498. doi: 10.5194/nhess-5-495-2005 CrossRefGoogle Scholar
  34. Fleig A (2004) Hydrological drought—a comparative study using daily discharge series from around the world. Master thesis, Institut fűr Hydrologie, der Albert-Ludwigs-Universität Freiburg i. Br., 144 pGoogle Scholar
  35. Foley JC (1957) Droughts in Australia: review of records from earliest years of settlement to 1955. Australian bureau of meteorology. Bull 43:281Google Scholar
  36. Furey PR, Gupta VK (2001) A physically based filter for separating base flow from streamflow time series. Water Resour Res 37(11):2709–2722. doi: 10.1029/2001WR000243 Google Scholar
  37. GBMO (1951) The meteorological glossary. Meteorological Committee, Chemical Publishing Co, New York, 253 pGoogle Scholar
  38. Gibbs WJ, Mahler JV (1967) Rainfall deciles as drought indicators. Australian bureau of meteorology. Bull 48:1–37Google Scholar
  39. Griffiths GA, Clausen B (1997) Streamflow recession in basins with multiple water storages. J Hydrol 190(1):60–74. doi: 10.1016/S0022-1694(96)03060-0 Google Scholar
  40. Haggard BE, Mansoner JR, Becker CJ (2003) Percentile distributions of median nitrite plus as nitrogen, total nitrogen and total phosphorus concentrations in Oklahoma streams, 1973–2001. Water-resources investigation report 03-4084, US Geological Survey, US Agricultural Research Service, 23 pGoogle Scholar
  41. Hall FR (1968) Base flow recessions—a review. Water Resour Res 4(5):973–983. doi: 10.1029/WR004i005p00973 Google Scholar
  42. Hanzel V, Bodiš D, Böhm V, Bujalka P, Fides J, Franko O, Hyánková K, Jetel J (1998) Geologický slovník—Hydrogeológia. [In Slovak] (Geological dictionary—Hydrogeology) Geologická služba Slovenskej republiky, Vydavateľstvo Dionýza Štúra, Bratislava, 301 p. ISBN 80-85314-80-0Google Scholar
  43. Harlfinger O, Kness G (1999) Klimahandbuch der Oesterreichischen Bodenschaetzung. Mitteilung der Oesterreichischen Bodenkundlichen Gessellschaft, Heft 58:1–196Google Scholar
  44. Herold DJ, Brady PV, Gregory RT (1995) Geochemical and stable isotope variations in base flow from an urbanized watershed: White Rock Creek, Dallas, Texas. In: Jensen R (ed) Proceedings of the 24th water for texas conference: research leads the way, Texas Water Resources Institute, pp 641–645Google Scholar
  45. Hisdal H, Clausen B, Gustard A, Peters E, Tallaksen LM (2004) Event definitions and indices. In: Tallaksen LM, Van Lanen HAJ (eds) Hydrological drought—processes and estimation methods for streamflow and groundwater. Dev Water Sci 48:579. Amsterdam, Elsevier Science B.V, ISBN-13:978-0-444-51767-8Google Scholar
  46. Hisdal H, Stahl K, Tallaksen LM, Demmuth S (2001) Have streamflow droughts in Europe become more severe or frequent? Int J Climatol 21:317–333. doi: 10.1002:joc.619 Google Scholar
  47. Horton RE (1933) The role of infiltration in the hydrological cycle. Trans Am Geophys Union 14:446–460Google Scholar
  48. Hoyt JC (1942) Drought of 1936, with discussion of the significance of drought in relation to climate. U.S. geological survey, water supply paper, vol 820, 62 pGoogle Scholar
  49. Hulme M (1992) Rainfall changes in Africa: 1931–60 to 1961–90. Int J Climatol 12:658–699. doi: 10.1002/joc.3370120703 CrossRefGoogle Scholar
  50. IFAD (1994) Development and the vulnerability of rural households to drought: issues and lessons from sub-saharan Africa. Paper for technical session: managing drought. World conference on natural disaster reduction, YokohamaGoogle Scholar
  51. Iglesias E, Garrodo A, Gómez A (2001) An economic drought management index to evaluate water institutions performance under uncertainty and climatic change. Ingenieros Agrónomos. doi: 10.1111/j.1467-8489.2007.00361.x, 37 p
  52. Institute of Hydrology (1980) Low flow studies. Res Rep 1. Institute of Hydrology, WallingfordGoogle Scholar
  53. Jakeman AJ, Hornberger GM (1993) How much complexity is warranted in a rainfall-runoff model? Water Resour Res 29:2637–2649. doi: 10.1029/93WR00877 CrossRefGoogle Scholar
  54. Juva K (1959) Závlaha půdy. [In Czech] (Soil irrigation) Praha, SZN, 597 pGoogle Scholar
  55. Karl TR (1986) The sensitivity of the palmer drought severity index and palmers Z-index to their calibration coefficients including potential evapotranspiration. J Climate Appl Meteor 49(6):77–86. doi: 10.1175/1520-0450(1986)025<0077:TSOTPD>2.0.CO;2 Google Scholar
  56. Kiraly L (2003) Karstification and groundwater flow. Speleogenesis and evolution of karst aquifers, 1(3):1–8Google Scholar
  57. Kogan FN (1995) Droughts of the late 1980s in the United States as derived from NOAA polar orbiting satellite data. Bull Amer Meteor Soc 76(5):655–668. doi: 10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2
  58. Kovacs A (2003) Geometry and hydraulic parameters of karst aquifers: a hydrodynamic modeling approach. Dissertation, CHYN, Université de Neuchậtel, 127 pGoogle Scholar
  59. Krenkel PA, Novotny V (1980) Water quality management. Academic, New York, 671 p. ISBN:978-0-124-26150-1Google Scholar
  60. Kullman E (1990) Krasovo-puklinové vody. [In Slovak with extended English summary] (Karst-fissure waters), GÚDŠ, Bratislava, 184 p. ISBN:80-85314-80-0Google Scholar
  61. Kullman E, Petráš I (1977) Čiary vyčerpávania prameňov a ich využitie pre hydrogeologickú charakteristiku horninového prostredia. [In Slovak] (Springs recession curves and their use for the hydrogeological characterization of rock environment), Geologické práce, Správy 67, ŠGUDŠ, Bratislava, pp 211–238Google Scholar
  62. Kullman E, Petráš I (1979) Výtokové pomery prameňov a ich vzťah k horninovému prostrediu. [In Slovak] (Recession conditions of springs and their relationship to the geological environment), Zborník prác HMÚ, 13, Alfa Bratislava, 308 pGoogle Scholar
  63. Leonard R (1999) Climate change and groundwater, predicting how changes in the hydrological cycle affect water resources. Aquifer 14(2)Google Scholar
  64. Lyne V, Hollick M (1979) Stochastic time-variable rainfall-runoff modeling. Institute of Engineers Australia National conference, publication 79/10, pp 89–93Google Scholar
  65. Maidment DR (1993) Handbook of hydrology. McGraw-Hill Inc., New York, 1424 p. ISBN-13: 978-0-070-39732-3Google Scholar
  66. Maillet E (1905) Essais d’Hydraulique Souterraine et Fluviale. Hermann Paris, 218 pGoogle Scholar
  67. Majerčáková O, Škoda P, Danáčková Z (2007) Vývoj vybraných hydrologických charakteristík za obdobia 1961–2000 a 2001–2006 v oblasti Vysokých Tatier. [In Slovak] (Development of selected hydrological characteristics for the period 1961–2000 and 2001–2006 in Vysoke Tatry Mts.), Meteorologický časopis, 10/4, pp 205–210. ISSN:1335-339XGoogle Scholar
  68. Matschullat J, Ottenstein R, Reinmann C (2000) Geochemical background—can we calculate it? Environ Geol 39(9):990–1000. doi: 10.1007/s11270-008-9898-2 CrossRefGoogle Scholar
  69. Mau DP, Winter TC (1997) Estimating ground-water recharge from streamflow hydrographs for a small mountain watershed in a temperate humid climate. Ground Water 35(2):291–304. doi: 10.1111/j.1745-6584.1997.tb00086.x CrossRefGoogle Scholar
  70. McGuire JK, Palmer WC (1957) The 1957 drought in the Eastern United States. Mon Weather Rev 85(9):305–314. doi: 10.1175/1520-0493(1957)085<0305:TDITEU>2.0.CO;2 CrossRefGoogle Scholar
  71. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Preprints, 8th conference on applied climatology, Anaheim, CA, pp 179–184Google Scholar
  72. McKee TB, Doesken NJ, Kleist J (1995) Drought monitoring with multiple time scales. In: 9th conference on applied climatology, American meteorological society, Dallas, TX, pp 233–236Google Scholar
  73. Meybeck M, Helmer R (1989) The quality of rivers: from pristine state to global pollution. Paleogeog Paleoclimat Paleoecol (Global Planet. Change Sect.) 75(4):283–309. doi: 10.1016/0031-0182(89)90191-0
  74. Meybeck M, Chapman D, Helmer R (1989) Global freshwater quality: a first assessment. Blackwell Reference, Oxford, 306 pGoogle Scholar
  75. Meyer SJ, Hubbard GH, Wilhite DA (1993a) A crop specific drought index for corn I. Model development and validation. Agron J 85(2):388–395. doi: 10.2134/agronj1993.00021962008500020040x Google Scholar
  76. Meyer SJ, Hubbard GH, Wilhite DA (1993b.) A crop specific drought index for corn II. Application in drought monitoring and assessment. Agron J 85(2):396–399. doi: 10.2134/agronj1993.00021962008500020041x Google Scholar
  77. Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base flow and recession analyses. Water Resour Res 26(7):1465–1473. doi: 10.1029/WR026i007p01465 CrossRefGoogle Scholar
  78. OFDA/CRED (2002) EM DAT: The OFDA/CRED international disaster database. Université Catholique de Louvain, Brussels, http://www.cred.be/emdat
  79. Padilla A, Pulido BA, Mangin A (1994) Relative importance of baseflow and quickflow from hydrographs of karst spring. Ground Water 32(2):267–277CrossRefGoogle Scholar
  80. Palmer WC (1965) Meteorological drought. US weather bureau research paper no. 45, Washington, 58 pGoogle Scholar
  81. Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 21:156–161CrossRefGoogle Scholar
  82. Peters AJ, Walter SEA, Ji L, Vina A, Hayes M, Svoboda MD (2002) Drought monitoring with NDVI—based standardized vegetation index. Photogram Eng Rem S 68(1):71–75Google Scholar
  83. Peters E, Torfis PJJF, Van Lanen HAJ, Bier G. (2003) Propagation of drought through groundwater—a new approach using linear theory. Hydrol Process 17:3023–3040. doi: 10.1002/hyp.1274 CrossRefGoogle Scholar
  84. Pitter P (1999) Hydrochemie. [In Czech] (Hydrochemistry), VŠCHT, Praha, 568 p. ISBN:978-80-7080-701-9Google Scholar
  85. Price M, Low RG, McCann C (2000) Mechanisms of water storage and flow in the unsaturated zone of the chalk aquifer. J Hydrol 233(1):54–71. doi: 10.1016/S0022-1694(00)00222-5 Google Scholar
  86. Robins NS, Calow RC, Macdonald AM, Macdonald DJM, Gibbs BR, Orpen WRG, Mtembezka P, Andrews AJ, Appiah SO, Banda K (1997) Final report—groundwater management in drought-prone areas of Africa. Brit Geolo Survey Report WC/97/57, UKGoogle Scholar
  87. Rossi G, Benedini M, Tsakiris G, Giakoumakis S (1992) On regional drought estimation and analysis. Water Resour Manag 6(4):249–277. doi: 10.1007/BF00872280 Google Scholar
  88. Rožnovský J, Litschmann T (eds) (2003) Seminář “Mikroklima porostú”. [In Czech] (Seminar “Microclimate of vegetation”), Brno, pp 59–65. ISBN:80-86690-05-9Google Scholar
  89. Sanders TG, Ward RC, Loftis JC, Steele TD, Adrian DD, Yevkevich V (1983) Design of networks for monitoring water quality. Water Resources Publications, Littleton, 323, pp. ISBN:978-0-918-33451-0Google Scholar
  90. Sklash MG, Farvolden RN, Fritz P (1975) A conceptual model of watershed response to rainfall, developed through the use of oxygen-18 as a natural tracer. Can J Earth Sci 13(2):271–283. doi: 10.1139/e76-029
  91. Slaninka I, Kordík J, Bodiš D (2005) Prístupy stanovenia pozaďových koncentrácii vybraných kvalitatívnych ukazovateľov v povrchových vodách. [In Slovak with English abstract and summary] (Principles of determination of background values for selected components in surface water, in respect to rock environment), Podzemná voda, vol 11, no 2, SAH, Bratislava, pp 209–220. ISSN:1335-1052Google Scholar
  92. Sloto RA, Crouse MY (1996) HYSEP: a computer program for streamflow hydrograph separation and analysis. U.S. geological survey, Water-resources investigations, report 96-4040, Pennsylvania, 46 pGoogle Scholar
  93. Sobíšek B et al (1993) Meteorologický slovník výkladový a terminologický 1. [In Czech] (Meteorological explanatory and terminology dictionary 1.), Ministry of Environment, Czech Republic, Praha, 594 pGoogle Scholar
  94. Stahl K (2001) Hydrological drought—a study across Europe. Dissertation, Albert-Ludwings-Universität Freiburg, Germany, 122 pGoogle Scholar
  95. Stojkovová M (2007) Odtok podzemnej vody Slovenska. [In Slovak with English abstract and summary] (Groundwater runoff on the territory of Slovakia). Podzemná voda, vol 13, no 2, SAH, Bratislava, pp 146–152. ISSN:1335-1052Google Scholar
  96. Škvarenina J, Tomlain J, Křížková E (2002) Klimatická vodní bilance. [In Czech with English abstract] (Climatic water balance). Meteorologické zprávy 55(4):103–109Google Scholar
  97. Šútor J, Gomboš M, Mati R (2007) Kvantifikácia pôdneho sucha a jej interpretácia. [In Slovak with English abstract] (Quantification of soil drought and its interpretation), Bioclimatology and Natural Hazards, International scientific conference, Poľana nad Detvou, Slovakia, 9 p. ISBN:978-80-228-17-60-8Google Scholar
  98. Tallaksen LM (1995) A review of base flow recession analysis. J Hydrol 165:349–370. doi: 10.1016/0022-1694(94)02540-R Google Scholar
  99. Tallaksen LM, Van Lanen HAJ (eds) (2004) Hydrological drought-processes and estimation methods for streamflow and groundwater. Developments in water science, vol 48. Elsevier, Amsterdam, p 579. ISBN-9780444517678Google Scholar
  100. Tase N (1976) Area-deficit-intensity characteristic of droughts. Hydrology papers, no. 87. Colorado State University, Fort Collins, 40 pGoogle Scholar
  101. Toebes C, Strang DD (1964) On recession curves 1: recession equations. J Hydrol N Z 3(2):2–15Google Scholar
  102. Tsuji G, Hoogenboon G, Thornton P (1998) Understanding options for agricultural production. Kluwer Academic Publishers, Bonston, 399 p. ISBN:978-0-7923-4833-7Google Scholar
  103. Tularam AG, Ilahee M (2008) Exponential smoothing method of base flow separation and its impact on continuous loss estimates. Am J Environ Sci 4(2):136–144. ISSN:1553-345XGoogle Scholar
  104. UNESCO/WHO (1978) Water quality surveys. A guide for the collection and interpretation of water quality data. Studies and reports in hydrology 23. United Nations Educational, Scientific and Cultural Organization, Paris, 350 p. ISBN:0-419-21590-5Google Scholar
  105. Van Loon AF, Van Lanen HAJ, Hisdal H, Tallaksen LM, Fendeková M, Oosterwijk J, Horvát O, Machlica A (2010) Understanding hydrological winter drought in Europe. Global change: facing risks and threads to water resources. In: Proceedings of the 6th world FRIEND conference, Fes, Moroco. IAHS Publications 340, pp 189–197. ISBN:978-92-63-11029-9Google Scholar
  106. Vestphal KS, Laramie RL, Borgatti D, Stoops R (2007) Drought management planning with economic and risk factors. J Water Resour Plan Manag 133(4):351–362. doi: 10.1061/(ASCE)0733-9496 CrossRefGoogle Scholar
  107. White I, Falkland T, Scott D (1999) Droughts in small coral islands: case study, South Taraba, Kiribati. IHP-V, Technical documents in hydrology, no 26. UNESCO, ParisGoogle Scholar
  108. WHO (1980) Environmental management for vector control. 4th report of the WHO expert committee on vector biology and control, technical report series, no 649. WHO, Geneva, 67 pGoogle Scholar
  109. WHO (1982) Manual for environmental management for mosquito control, with special emphasis on malaria vectors. WHO offset publication no. 66. WHO, Geneva, 281 pGoogle Scholar
  110. WHO (1983) Integrated vector control. In: 7th report of the WHO expert committee on vector biology and control, technical report series no. 688. WHO, Geneva, 72 pGoogle Scholar
  111. WHO (1985) Guidelines for drinking-water quality, vol 3. Drinking-water quality control in small-community supplies. WHO, Geneva, 120 pGoogle Scholar
  112. WHO (1991) GEMS/WATER 1990–2000. The challenge ahead. WHO/PEP/91.2. WHO, GenevaGoogle Scholar
  113. WHO (1992) GEMS/WATER operational guide, 3rd edn. WHO, GenevaGoogle Scholar
  114. Wilhite DA (1993) Drought assessment, management and planning: theory and case studies. Kluwer Academic Publishers, Bonston, 316 p. ISBN-13:978-0792393375Google Scholar
  115. Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10(3):111–120. doi: 10.1080/02508068508686328 Google Scholar
  116. Wittenberg H (1994) Nonlinear analysis of flow recession curves. IAHS Publ. 221, pp 61–76. ISBN:0-947571-04-3Google Scholar
  117. WMO (1988) Manual on water quality monitoring. WMO operational hydrology report, no. 27, WMO publication no. 680. WHO, Geneva, p 197. ISBN:0-419-21590-5Google Scholar
  118. Woo MK, Tarhule A (1994) Streamflow droughts of northern Nigerian rivers. Hydrol Sci J 39(1):19–34. doi: 10.1080/02626669409492717 Google Scholar
  119. Xu Y, Titus R, Holness SD, Zhang J, Tonder GJ (2002) A hydrogeomorphological approach to quantification groundwater discharge to streams in South Africa. Water SA 28(4):375–380. ISSN:0378-4738CrossRefGoogle Scholar
  120. Yasuno M, Whitton BA (1988) Biological monitoring of environmental pollution. Tokai University Press, Tokyo, ISBN:9-784-48601037-1Google Scholar
  121. Zaidman M, Rees G, Gustard A (2001) Drought visualization. In: Demuth S, Stahl K (eds) Assessment of the regional impact of droughts in Europe. Final report, EU contract ENV4-CT-97-0553. Institute of Hydrology, University of Freiburg, Freibutg, GermanyGoogle Scholar
  122. Zelenhasić E, Salvi A (1987) A method of streamflow drought analysis. Water Resour Res 23(1):156–168. doi: 10.1029/WR023i001p00156 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of HydrogeologyComenius UniversityBratislavaSlovakia

Personalised recommendations