Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The term “drought” has nowadays a large number of definitions and it is seen from different perspectives. Drought generally starts with a lack of rainfall. Its symptoms significantly affect the intensity of evapotranspiration. It affects the air and soil moisture, runoff characteristics of the surface- and groundwater. Definitions of drought we know relatively numerous, due to its temporal and spatial variability, as well as due to different ways of perception with regard to the purposes for which it is defined. The definitions of drought, which are used in practice, determine the start, end and eventually the intensity of the impacts on various assessed fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen GA, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, Rome, Italy, pp 78–86

    Google Scholar 

  • APHA (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington, 268 p

    Google Scholar 

  • Barcelona MJ, Gibb JP, Helfrich JA, Garske EE (1985) Practical guide for groundwater sampling. ISWS contract report 374. Illinois State Water Survey, Champaign, Illinois, 94 p

    Google Scholar 

  • Bartram J, Ballence R (1996) Water quality monitoring: a practical guide to the design and implementation of fresh water quality studies and monitoring programmes. Chapman & Hall, London

    Google Scholar 

  • Bates BC, Davies PK (1988) Effect of base flow separation procedures on surface runoff models. J Hydrol 103(3–4):309–322. doi:10.1016/0022-1694(88)90140-0

    Google Scholar 

  • Bavel CHM, Verlinden FJ (1956) Agricultural drought in North Carolina. North Carolina agricultural experiment station. Technical bulletin no. 122, 60 p

    Google Scholar 

  • Benetin J, Šoltész A (1988) Hydrologické charakteristiky vodného režimu pôd a ich výpočet. [In Slovak] (Hydrological characteristics of soil water regime and their calculation), In: Agromelio, Nitra, ČSVTS, pp 12–20

    Google Scholar 

  • Blinka P (2002) Metoda hodnocení sucha. [In Czech] (Method of drought assessment), In: XIV. Česko-slovenská bioklimatologická konference, Lednice na Moravě, pp 32–44, ISBN:80-85813-99-8

    Google Scholar 

  • Blumenstock G (1942) Drought in the United States analyzed by means of the theory of probability. Technical bulletin no. 819, U.S. Department of Agriculture, 5 p

    Google Scholar 

  • Boughton WC (1993) A hydrograph-based model for estimating water yield of ungauged catchments. Institute of engineers australia national conference. Pub. 93/14, pp 317–324

    Google Scholar 

  • Boussinesq J (1877) Essai sur la theories des eaux courantes. Memoires presentes par divers savants a l’Academic des Sciences de l’Institut National de France, Tome XXIII, No. 1

    Google Scholar 

  • Boussinesq J (1904) Recherches theoretique sur l’ecoulement des nappes d’eau infiltrees dans le sol et sur le debit des sources. J Math Pure Appl 10(5th Series):5–78

    Google Scholar 

  • Brádka J et al. (1961) Počasí na území Čech a Moravy v typických povětrnostních situacích. [In Czech] (Weather in Czech and Moravia in typical weather situations), HMÚ, Praha, 32 p

    Google Scholar 

  • Brázdil R, Kolář M, Žaloudík J (1985) Prostorové úhrny srážek na Moravě v období 1881–1980. [In Czech] (Spatial precipitation totals in Moravia in the period 1881–1980), Meteorologické zprávy, 38(3):87–92

    Google Scholar 

  • Brušková V (2007) Hodnotenie meteorologického sucha v povodí horného toku Torysy. [In Slovak with English abstract and summary] (Evaluation of meteorological drought in the upper part of Torysa catchment). Podzemná voda 13(2):169–176, SAH, Bratislava

    Google Scholar 

  • Brutsaert W, Nieber JL (1977) Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour Res 13(3):637–643. doi:10.1029/WR013i003p00637

    Article  Google Scholar 

  • Chapman D (1996) Water quality assessments—a guide to use of biota, sediments and water in environmental monitoring, 2nd edn. University Press, Cambridge, 609 p. ISBN:0-419-21590-5

    Book  Google Scholar 

  • Chapman TG (1991) Comment on evaluation of automated techniques for base flow and recession analyzes, by RJ Nathan and TA McMahon. Water Resour Res 27(7):1783–1784. doi:10.1029/91WR01007

    Article  Google Scholar 

  • Chapman TG, Maxwell AI (1996) Baseflow separation—comparison of numerical methods with tracer experiments. Institute engineers australia national conference, Pub. 96/05, pp 539–545

    Google Scholar 

  • CIS (1987) Methods for bioindication and biotesting in natural waters. (USSR state committee for hydrometeorology and environmental control), vol 1. Hydrochemical Institute, Leningrad, 152 p

    Google Scholar 

  • Condra GE (1944) Drought, its effects and measures of control in Nebraska. Nebraska conservation bulletin no. 25, University of Nebraska, Conservation and Survey Division, p 1

    Google Scholar 

  • Cooper HH, Rorabaugh MI (1963) Groundwater movements and bank storage due to flood stages in surface streams. USGS water supply paper 1536-J, pp 343–366

    Google Scholar 

  • Coutagne A (1948) Les variations de débit en période non influencée par les précipitations. La Houulle Blanche, 3:416–436

    Article  Google Scholar 

  • Day JBW, Roda JC (1978) The effects of the 1975–76 drought on groundwater and aquifers. Proc R Soc Lond Seri A 363:55–68

    Google Scholar 

  • Demeterová D (2000) Analýza hydrologického sucha. [In Slovak with English abstract] (Hydrology drought analysis), In: Conference Proceedings Bioklimatológia a životné prostredie, XIII. Bioklimatologická konferencia, SBkS a ČBkS, Košice, 17 p

    Google Scholar 

  • Drlička R (2004) Sucho na Morave a ve Slezsku. [In Czech with English abstract] (Drought in Moravia and Silesia), Master thesis, Přírodovědecká fakulta, Masarikova univerzita, Brno, 60 p

    Google Scholar 

  • EC DG Environment (2003) Agenda 4: analysis and monitoring of priority substances. Background concentrations. Brussels, p 14

    Google Scholar 

  • Eitzinger J, Trnka M (2006) Ein Trockenschadenmodell für das österreichische Grünland. Bericht, 2. Klimaseminar “Klimaforschung für die Grünlandwirtschaft” der HBLFA Raumberg-Gumpenstein. Gumpenstein, ISBN:3-901980-87-3

    Google Scholar 

  • Eltahir EAB, Yeh PJF (1999) On the asymmetric response of aquifer water level to floods and droughts in Illinois. Water Resour Res 35(4):1199–1217. doi:10.1029/1998WR900071

  • EPA (1998) National water quality inventory

    Google Scholar 

  • EPA (2000) Nutrient criteria technical guidance manual: rivers and streams. EPA 822/B-00/002. p 141

    Google Scholar 

  • Fendeková M, Ženišová Z, Demeterová B, Fendek M, Fľaková R, Gavurnik J, Krčma D, Macura V, Némethy P, Slivová V (2010) Hydrogeologické sucho. [In Slovak with English summary] (Hydrogeological drought). Comenius University, Bratislava, 180 p. ISBN:978-80-969342-7-0

    Google Scholar 

  • Feng LH, Zhang XC (2005) Quantitative expression on drought magnitude and disaster intensity. Nat Hazards Earth Syst Sci 5:495–498. doi:10.5194/nhess-5-495-2005

    Article  Google Scholar 

  • Fleig A (2004) Hydrological drought—a comparative study using daily discharge series from around the world. Master thesis, Institut fűr Hydrologie, der Albert-Ludwigs-Universität Freiburg i. Br., 144 p

    Google Scholar 

  • Foley JC (1957) Droughts in Australia: review of records from earliest years of settlement to 1955. Australian bureau of meteorology. Bull 43:281

    Google Scholar 

  • Furey PR, Gupta VK (2001) A physically based filter for separating base flow from streamflow time series. Water Resour Res 37(11):2709–2722. doi:10.1029/2001WR000243

    Google Scholar 

  • GBMO (1951) The meteorological glossary. Meteorological Committee, Chemical Publishing Co, New York, 253 p

    Google Scholar 

  • Gibbs WJ, Mahler JV (1967) Rainfall deciles as drought indicators. Australian bureau of meteorology. Bull 48:1–37

    Google Scholar 

  • Griffiths GA, Clausen B (1997) Streamflow recession in basins with multiple water storages. J Hydrol 190(1):60–74. doi:10.1016/S0022-1694(96)03060-0

    Google Scholar 

  • Haggard BE, Mansoner JR, Becker CJ (2003) Percentile distributions of median nitrite plus as nitrogen, total nitrogen and total phosphorus concentrations in Oklahoma streams, 1973–2001. Water-resources investigation report 03-4084, US Geological Survey, US Agricultural Research Service, 23 p

    Google Scholar 

  • Hall FR (1968) Base flow recessions—a review. Water Resour Res 4(5):973–983. doi:10.1029/WR004i005p00973

    Google Scholar 

  • Hanzel V, Bodiš D, Böhm V, Bujalka P, Fides J, Franko O, Hyánková K, Jetel J (1998) Geologický slovník—Hydrogeológia. [In Slovak] (Geological dictionary—Hydrogeology) Geologická služba Slovenskej republiky, Vydavateľstvo Dionýza Štúra, Bratislava, 301 p. ISBN 80-85314-80-0

    Google Scholar 

  • Harlfinger O, Kness G (1999) Klimahandbuch der Oesterreichischen Bodenschaetzung. Mitteilung der Oesterreichischen Bodenkundlichen Gessellschaft, Heft 58:1–196

    Google Scholar 

  • Herold DJ, Brady PV, Gregory RT (1995) Geochemical and stable isotope variations in base flow from an urbanized watershed: White Rock Creek, Dallas, Texas. In: Jensen R (ed) Proceedings of the 24th water for texas conference: research leads the way, Texas Water Resources Institute, pp 641–645

    Google Scholar 

  • Hisdal H, Clausen B, Gustard A, Peters E, Tallaksen LM (2004) Event definitions and indices. In: Tallaksen LM, Van Lanen HAJ (eds) Hydrological drought—processes and estimation methods for streamflow and groundwater. Dev Water Sci 48:579. Amsterdam, Elsevier Science B.V, ISBN-13:978-0-444-51767-8

    Google Scholar 

  • Hisdal H, Stahl K, Tallaksen LM, Demmuth S (2001) Have streamflow droughts in Europe become more severe or frequent? Int J Climatol 21:317–333. doi:10.1002:joc.619

    Google Scholar 

  • Horton RE (1933) The role of infiltration in the hydrological cycle. Trans Am Geophys Union 14:446–460

    Google Scholar 

  • Hoyt JC (1942) Drought of 1936, with discussion of the significance of drought in relation to climate. U.S. geological survey, water supply paper, vol 820, 62 p

    Google Scholar 

  • Hulme M (1992) Rainfall changes in Africa: 1931–60 to 1961–90. Int J Climatol 12:658–699. doi:10.1002/joc.3370120703

    Article  Google Scholar 

  • IFAD (1994) Development and the vulnerability of rural households to drought: issues and lessons from sub-saharan Africa. Paper for technical session: managing drought. World conference on natural disaster reduction, Yokohama

    Google Scholar 

  • Iglesias E, Garrodo A, Gómez A (2001) An economic drought management index to evaluate water institutions performance under uncertainty and climatic change. Ingenieros Agrónomos. doi:10.1111/j.1467-8489.2007.00361.x, 37 p

  • Institute of Hydrology (1980) Low flow studies. Res Rep 1. Institute of Hydrology, Wallingford

    Google Scholar 

  • Jakeman AJ, Hornberger GM (1993) How much complexity is warranted in a rainfall-runoff model? Water Resour Res 29:2637–2649. doi:10.1029/93WR00877

    Article  Google Scholar 

  • Juva K (1959) Závlaha půdy. [In Czech] (Soil irrigation) Praha, SZN, 597 p

    Google Scholar 

  • Karl TR (1986) The sensitivity of the palmer drought severity index and palmers Z-index to their calibration coefficients including potential evapotranspiration. J Climate Appl Meteor 49(6):77–86. doi:10.1175/1520-0450(1986)025<0077:TSOTPD>2.0.CO;2

    Google Scholar 

  • Kiraly L (2003) Karstification and groundwater flow. Speleogenesis and evolution of karst aquifers, 1(3):1–8

    Google Scholar 

  • Kogan FN (1995) Droughts of the late 1980s in the United States as derived from NOAA polar orbiting satellite data. Bull Amer Meteor Soc 76(5):655–668. doi:10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2

  • Kovacs A (2003) Geometry and hydraulic parameters of karst aquifers: a hydrodynamic modeling approach. Dissertation, CHYN, Université de Neuchậtel, 127 p

    Google Scholar 

  • Krenkel PA, Novotny V (1980) Water quality management. Academic, New York, 671 p. ISBN:978-0-124-26150-1

    Google Scholar 

  • Kullman E (1990) Krasovo-puklinové vody. [In Slovak with extended English summary] (Karst-fissure waters), GÚDŠ, Bratislava, 184 p. ISBN:80-85314-80-0

    Google Scholar 

  • Kullman E, Petráš I (1977) Čiary vyčerpávania prameňov a ich využitie pre hydrogeologickú charakteristiku horninového prostredia. [In Slovak] (Springs recession curves and their use for the hydrogeological characterization of rock environment), Geologické práce, Správy 67, ŠGUDŠ, Bratislava, pp 211–238

    Google Scholar 

  • Kullman E, Petráš I (1979) Výtokové pomery prameňov a ich vzťah k horninovému prostrediu. [In Slovak] (Recession conditions of springs and their relationship to the geological environment), Zborník prác HMÚ, 13, Alfa Bratislava, 308 p

    Google Scholar 

  • Leonard R (1999) Climate change and groundwater, predicting how changes in the hydrological cycle affect water resources. Aquifer 14(2)

    Google Scholar 

  • Lyne V, Hollick M (1979) Stochastic time-variable rainfall-runoff modeling. Institute of Engineers Australia National conference, publication 79/10, pp 89–93

    Google Scholar 

  • Maidment DR (1993) Handbook of hydrology. McGraw-Hill Inc., New York, 1424 p. ISBN-13: 978-0-070-39732-3

    Google Scholar 

  • Maillet E (1905) Essais d’Hydraulique Souterraine et Fluviale. Hermann Paris, 218 p

    Google Scholar 

  • Majerčáková O, Škoda P, Danáčková Z (2007) Vývoj vybraných hydrologických charakteristík za obdobia 1961–2000 a 2001–2006 v oblasti Vysokých Tatier. [In Slovak] (Development of selected hydrological characteristics for the period 1961–2000 and 2001–2006 in Vysoke Tatry Mts.), Meteorologický časopis, 10/4, pp 205–210. ISSN:1335-339X

    Google Scholar 

  • Matschullat J, Ottenstein R, Reinmann C (2000) Geochemical background—can we calculate it? Environ Geol 39(9):990–1000. doi:10.1007/s11270-008-9898-2

    Article  Google Scholar 

  • Mau DP, Winter TC (1997) Estimating ground-water recharge from streamflow hydrographs for a small mountain watershed in a temperate humid climate. Ground Water 35(2):291–304. doi:10.1111/j.1745-6584.1997.tb00086.x

    Article  Google Scholar 

  • McGuire JK, Palmer WC (1957) The 1957 drought in the Eastern United States. Mon Weather Rev 85(9):305–314. doi:10.1175/1520-0493(1957)085<0305:TDITEU>2.0.CO;2

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Preprints, 8th conference on applied climatology, Anaheim, CA, pp 179–184

    Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1995) Drought monitoring with multiple time scales. In: 9th conference on applied climatology, American meteorological society, Dallas, TX, pp 233–236

    Google Scholar 

  • Meybeck M, Helmer R (1989) The quality of rivers: from pristine state to global pollution. Paleogeog Paleoclimat Paleoecol (Global Planet. Change Sect.) 75(4):283–309. doi:10.1016/0031-0182(89)90191-0

  • Meybeck M, Chapman D, Helmer R (1989) Global freshwater quality: a first assessment. Blackwell Reference, Oxford, 306 p

    Google Scholar 

  • Meyer SJ, Hubbard GH, Wilhite DA (1993a) A crop specific drought index for corn I. Model development and validation. Agron J 85(2):388–395. doi:10.2134/agronj1993.00021962008500020040x

    Google Scholar 

  • Meyer SJ, Hubbard GH, Wilhite DA (1993b.) A crop specific drought index for corn II. Application in drought monitoring and assessment. Agron J 85(2):396–399. doi:10.2134/agronj1993.00021962008500020041x

    Google Scholar 

  • Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base flow and recession analyses. Water Resour Res 26(7):1465–1473. doi:10.1029/WR026i007p01465

    Article  Google Scholar 

  • OFDA/CRED (2002) EM DAT: The OFDA/CRED international disaster database. Université Catholique de Louvain, Brussels, http://www.cred.be/emdat

  • Padilla A, Pulido BA, Mangin A (1994) Relative importance of baseflow and quickflow from hydrographs of karst spring. Ground Water 32(2):267–277

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. US weather bureau research paper no. 45, Washington, 58 p

    Google Scholar 

  • Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 21:156–161

    Article  Google Scholar 

  • Peters AJ, Walter SEA, Ji L, Vina A, Hayes M, Svoboda MD (2002) Drought monitoring with NDVI—based standardized vegetation index. Photogram Eng Rem S 68(1):71–75

    Google Scholar 

  • Peters E, Torfis PJJF, Van Lanen HAJ, Bier G. (2003) Propagation of drought through groundwater—a new approach using linear theory. Hydrol Process 17:3023–3040. doi:10.1002/hyp.1274

    Article  Google Scholar 

  • Pitter P (1999) Hydrochemie. [In Czech] (Hydrochemistry), VŠCHT, Praha, 568 p. ISBN:978-80-7080-701-9

    Google Scholar 

  • Price M, Low RG, McCann C (2000) Mechanisms of water storage and flow in the unsaturated zone of the chalk aquifer. J Hydrol 233(1):54–71. doi:10.1016/S0022-1694(00)00222-5

    Google Scholar 

  • Robins NS, Calow RC, Macdonald AM, Macdonald DJM, Gibbs BR, Orpen WRG, Mtembezka P, Andrews AJ, Appiah SO, Banda K (1997) Final report—groundwater management in drought-prone areas of Africa. Brit Geolo Survey Report WC/97/57, UK

    Google Scholar 

  • Rossi G, Benedini M, Tsakiris G, Giakoumakis S (1992) On regional drought estimation and analysis. Water Resour Manag 6(4):249–277. doi:10.1007/BF00872280

    Google Scholar 

  • Rožnovský J, Litschmann T (eds) (2003) Seminář “Mikroklima porostú”. [In Czech] (Seminar “Microclimate of vegetation”), Brno, pp 59–65. ISBN:80-86690-05-9

    Google Scholar 

  • Sanders TG, Ward RC, Loftis JC, Steele TD, Adrian DD, Yevkevich V (1983) Design of networks for monitoring water quality. Water Resources Publications, Littleton, 323, pp. ISBN:978-0-918-33451-0

    Google Scholar 

  • Sklash MG, Farvolden RN, Fritz P (1975) A conceptual model of watershed response to rainfall, developed through the use of oxygen-18 as a natural tracer. Can J Earth Sci 13(2):271–283. doi:10.1139/e76-029

  • Slaninka I, Kordík J, Bodiš D (2005) Prístupy stanovenia pozaďových koncentrácii vybraných kvalitatívnych ukazovateľov v povrchových vodách. [In Slovak with English abstract and summary] (Principles of determination of background values for selected components in surface water, in respect to rock environment), Podzemná voda, vol 11, no 2, SAH, Bratislava, pp 209–220. ISSN:1335-1052

    Google Scholar 

  • Sloto RA, Crouse MY (1996) HYSEP: a computer program for streamflow hydrograph separation and analysis. U.S. geological survey, Water-resources investigations, report 96-4040, Pennsylvania, 46 p

    Google Scholar 

  • Sobíšek B et al (1993) Meteorologický slovník výkladový a terminologický 1. [In Czech] (Meteorological explanatory and terminology dictionary 1.), Ministry of Environment, Czech Republic, Praha, 594 p

    Google Scholar 

  • Stahl K (2001) Hydrological drought—a study across Europe. Dissertation, Albert-Ludwings-Universität Freiburg, Germany, 122 p

    Google Scholar 

  • Stojkovová M (2007) Odtok podzemnej vody Slovenska. [In Slovak with English abstract and summary] (Groundwater runoff on the territory of Slovakia). Podzemná voda, vol 13, no 2, SAH, Bratislava, pp 146–152. ISSN:1335-1052

    Google Scholar 

  • Škvarenina J, Tomlain J, Křížková E (2002) Klimatická vodní bilance. [In Czech with English abstract] (Climatic water balance). Meteorologické zprávy 55(4):103–109

    Google Scholar 

  • Šútor J, Gomboš M, Mati R (2007) Kvantifikácia pôdneho sucha a jej interpretácia. [In Slovak with English abstract] (Quantification of soil drought and its interpretation), Bioclimatology and Natural Hazards, International scientific conference, Poľana nad Detvou, Slovakia, 9 p. ISBN:978-80-228-17-60-8

    Google Scholar 

  • Tallaksen LM (1995) A review of base flow recession analysis. J Hydrol 165:349–370. doi:10.1016/0022-1694(94)02540-R

    Google Scholar 

  • Tallaksen LM, Van Lanen HAJ (eds) (2004) Hydrological drought-processes and estimation methods for streamflow and groundwater. Developments in water science, vol 48. Elsevier, Amsterdam, p 579. ISBN-9780444517678

    Google Scholar 

  • Tase N (1976) Area-deficit-intensity characteristic of droughts. Hydrology papers, no. 87. Colorado State University, Fort Collins, 40 p

    Google Scholar 

  • Toebes C, Strang DD (1964) On recession curves 1: recession equations. J Hydrol N Z 3(2):2–15

    Google Scholar 

  • Tsuji G, Hoogenboon G, Thornton P (1998) Understanding options for agricultural production. Kluwer Academic Publishers, Bonston, 399 p. ISBN:978-0-7923-4833-7

    Google Scholar 

  • Tularam AG, Ilahee M (2008) Exponential smoothing method of base flow separation and its impact on continuous loss estimates. Am J Environ Sci 4(2):136–144. ISSN:1553-345X

    Google Scholar 

  • UNESCO/WHO (1978) Water quality surveys. A guide for the collection and interpretation of water quality data. Studies and reports in hydrology 23. United Nations Educational, Scientific and Cultural Organization, Paris, 350 p. ISBN:0-419-21590-5

    Google Scholar 

  • Van Loon AF, Van Lanen HAJ, Hisdal H, Tallaksen LM, Fendeková M, Oosterwijk J, Horvát O, Machlica A (2010) Understanding hydrological winter drought in Europe. Global change: facing risks and threads to water resources. In: Proceedings of the 6th world FRIEND conference, Fes, Moroco. IAHS Publications 340, pp 189–197. ISBN:978-92-63-11029-9

    Google Scholar 

  • Vestphal KS, Laramie RL, Borgatti D, Stoops R (2007) Drought management planning with economic and risk factors. J Water Resour Plan Manag 133(4):351–362. doi:10.1061/(ASCE)0733-9496

    Article  Google Scholar 

  • White I, Falkland T, Scott D (1999) Droughts in small coral islands: case study, South Taraba, Kiribati. IHP-V, Technical documents in hydrology, no 26. UNESCO, Paris

    Google Scholar 

  • WHO (1980) Environmental management for vector control. 4th report of the WHO expert committee on vector biology and control, technical report series, no 649. WHO, Geneva, 67 p

    Google Scholar 

  • WHO (1982) Manual for environmental management for mosquito control, with special emphasis on malaria vectors. WHO offset publication no. 66. WHO, Geneva, 281 p

    Google Scholar 

  • WHO (1983) Integrated vector control. In: 7th report of the WHO expert committee on vector biology and control, technical report series no. 688. WHO, Geneva, 72 p

    Google Scholar 

  • WHO (1985) Guidelines for drinking-water quality, vol 3. Drinking-water quality control in small-community supplies. WHO, Geneva, 120 p

    Google Scholar 

  • WHO (1991) GEMS/WATER 1990–2000. The challenge ahead. WHO/PEP/91.2. WHO, Geneva

    Google Scholar 

  • WHO (1992) GEMS/WATER operational guide, 3rd edn. WHO, Geneva

    Google Scholar 

  • Wilhite DA (1993) Drought assessment, management and planning: theory and case studies. Kluwer Academic Publishers, Bonston, 316 p. ISBN-13:978-0792393375

    Google Scholar 

  • Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10(3):111–120. doi:10.1080/02508068508686328

    Google Scholar 

  • Wittenberg H (1994) Nonlinear analysis of flow recession curves. IAHS Publ. 221, pp 61–76. ISBN:0-947571-04-3

    Google Scholar 

  • WMO (1988) Manual on water quality monitoring. WMO operational hydrology report, no. 27, WMO publication no. 680. WHO, Geneva, p 197. ISBN:0-419-21590-5

    Google Scholar 

  • Woo MK, Tarhule A (1994) Streamflow droughts of northern Nigerian rivers. Hydrol Sci J 39(1):19–34. doi:10.1080/02626669409492717

    Google Scholar 

  • Xu Y, Titus R, Holness SD, Zhang J, Tonder GJ (2002) A hydrogeomorphological approach to quantification groundwater discharge to streams in South Africa. Water SA 28(4):375–380. ISSN:0378-4738

    Article  Google Scholar 

  • Yasuno M, Whitton BA (1988) Biological monitoring of environmental pollution. Tokai University Press, Tokyo, ISBN:9-784-48601037-1

    Google Scholar 

  • Zaidman M, Rees G, Gustard A (2001) Drought visualization. In: Demuth S, Stahl K (eds) Assessment of the regional impact of droughts in Europe. Final report, EU contract ENV4-CT-97-0553. Institute of Hydrology, University of Freiburg, Freibutg, Germany

    Google Scholar 

  • Zelenhasić E, Salvi A (1987) A method of streamflow drought analysis. Water Resour Res 23(1):156–168. doi:10.1029/WR023i001p00156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Gregor .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gregor, M. (2013). Methodology. In: Surface- and Groundwater Quality Changes in Periods of Water Scarcity. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32244-0_2

Download citation

Publish with us

Policies and ethics