Restricted Max-Min Fair Allocations with Inclusion-Free Intervals

  • Monaldo Mastrolilli
  • Georgios Stamoulis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)


We consider the restricted assignment version of the problem of fairly allocating a set of m indivisible items to n agents (also known as the Santa Claus problem). We study the variant where every item has some non-negative value and it can be assigned to an interval of players (i.e. to a set of consecutive players). Moreover, intervals are inclusion free. The goal is to distribute the items to the players and fair allocations in this context are those maximizing the minimum utility received by any agent. When every item can be assigned to any player a PTAS is known [Woe97]. We present a 1/2-approximation algorithm for the addressed more general variant with inclusion-free intervals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AFS08]
    Asadpour, A., Feige, U., Saberi, A.: Santa Claus Meets Hypergraph Matchings. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 10–20. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. [AS00]
    Alon, N., Spencer, J.H.: The probabilistic method, 2nd edn. Wiley-Interscience, New York (2000)zbMATHCrossRefGoogle Scholar
  3. [AS07]
    Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation of indivisible goods. In: STOC, pp. 114–121. ACM (2007)Google Scholar
  4. [AS10]
    Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation of indivisible goods. SIAM J. Comput. 39(7), 2970–2989 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [BCG09]
    Bateni, M.H., Charikar, M., Guruswami, V.: Maxmin allocation via degree lower-bounded arborescences. In: STOC. ACM (2009)Google Scholar
  6. [BD05]
    Bezáková, I., Dani, V.: Allocating indivisible goods. SIGecom Exchanges 5(3), 11–18 (2005)CrossRefGoogle Scholar
  7. [BS06]
    Bansal, N., Sviridenko, M.: The santa claus problem. In: STOC, pp. 31–40. ACM (2006)Google Scholar
  8. [CCK09]
    Chakrabarty, D., Chuzhoy, J., Khanna, S.: On allocating goods to maximize fairness. In: FOCS, pp. 107–116 (2009)Google Scholar
  9. [Fei08]
    Feige, U.: On allocations that maximize fairness. In: SODA, pp. 287–293. ACM-SIAM (2008)Google Scholar
  10. [GJ79]
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)Google Scholar
  11. [HSS11]
    Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the lovász local lemma. J. ACM 58(6), 28 (2011)MathSciNetCrossRefGoogle Scholar
  12. [HV50]
    Halmos, P.R., Vaughan, H.E.: The marriage problem. American Journal of Mathematics, 214–215 (1950)Google Scholar
  13. [KP07]
    Khot, S., Ponnuswami, A.K.: Approximation Algorithms for the Max-Min Allocation Problem. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 204–217. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. [LST87]
    Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines. In: FOCS, pp. 217–224. IEEE (1987)Google Scholar
  15. [PS12]
    Polacek, L., Svensson, O.: Quasi-polynomial local search for restricted max-min fair allocation. In: ICALP 2012 (2012)Google Scholar
  16. [Sch98]
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons (1998)Google Scholar
  17. [Sch03]
    Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer (2003)Google Scholar
  18. [Sga96]
    Sgall, J.: Randomized on-line scheduling of parallel jobs. J. Algorithms 21(1), 149–175 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  19. [SS10]
    Saha, B., Srinivasan, A.: A new approximation technique for resource-allocation problems. In: ICS, pp. 342–357. Tsinghua University Press (2010)Google Scholar
  20. [ST93]
    Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Math. Program. 62, 461–474 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  21. [Woe97]
    Woeginger, G.: A polynomial-time approximation scheme for maximizing the minimum machine completion time. Operation Research Letters 20(4), 149–154 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Monaldo Mastrolilli
    • 1
  • Georgios Stamoulis
    • 1
  1. 1.IDSIALuganoSwitzerland

Personalised recommendations