Dynamic Programming for H-minor-free Graphs

  • Juanjo Rué
  • Ignasi Sau
  • Dimitrios M. Thilikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)


We provide a framework for the design and analysis of dynamic programming algorithms for H-minor-free graphs with branchwidth at most k. Our technique applies to a wide family of problems where standard (deterministic) dynamic programming runs in 2 O(k·logk)·n O(1) steps, with n being the number of vertices of the input graph. Extending the approach developed by the same authors for graphs embedded in surfaces, we introduce a new type of branch decomposition for H-minor-free graphs, called an H-minor-free cut decomposition, and we show that they can be constructed in O h (n 3) steps, where the hidden constant depends exclusively on H. We show that the separators of such decompositions have connected packings whose behavior can be described in terms of a combinatorial object called ℓ-triangulation. Our main result is that when applied on H-minor-free cut decompositions, dynamic programming runs in \(2^{O_h(k)}\cdot n^{O(1)}\) steps. This broadens substantially the class of problems that can be solved deterministically in single-exponential time for H-minor-free graphs.


analysis of algorithms parameterized algorithms graphs minors branchwidth dynamic programming non-crossing partitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, G.: The Theory of Partitions. Cambridge University Press (1984)Google Scholar
  2. 2.
    Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability – a survey. BIT 25(1), 2–23 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Arvind, V., Mukhopadhyay, P.: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 276–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L.: Dynamic Programming on Graphs with Bounded Treewidth. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  5. 5.
    Bonsma, P.: Surface split decompositions and subgraph isomorphism in graphs on surfaces. CoRR, abs/1109.4554 (2011), to appear in the Proc. of STACS 2012Google Scholar
  6. 6.
    Courcelle, B.: The Monadic Second-Order Logic of Graphs: Definable Sets of Finite Graphs. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 30–53. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  7. 7.
    Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proc. of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 150–159 (2011)Google Scholar
  8. 8.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential Parameterized Algorithms on Graphs of Bounded Genus and H-Minor-Free Graphs. Journal of the ACM 52(6), 866–893 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dorn, F., Fomin, F.V., Thilikos, D.M.: Fast Subexponential Algorithm for Non-local Problems on Graphs of Bounded Genus. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 172–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential Parameterized Algorithms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 15–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan Structures and Dynamic Programming in H-minor-free Graphs. In: Proc. of the 19th Annual ACM-SIAM Symposium on Discrete algorithms (SODA), pp. 631–640 (2008)Google Scholar
  12. 12.
    Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica 58(3), 790–810 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dress, A., Koolen, J.H., Moulton, V.: On line arrangements in the hyperbolic plane. European Journal of Combinatorics 23(5), 549–557 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jonsson, J.: Generalized triangulations and diagonal-free subsets of stack polyominoes. Journal of Combinatorial Theory, Series A 112(1), 117–142 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kawarabayashi, K.-I., Wollan, P.: A simpler algorithm and shorter proof for the graph minor decomposition. In: Proc. of the 43rd ACM Symposium on Theory of Computing (STOC), pp. 451–458 (2011)Google Scholar
  16. 16.
    Lokshtanov, D., Marx, D., Saurabh, S.: Slightly Superexponential Parameterized Problems. In: Proc. of the 22nd annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 760–776 (2011)Google Scholar
  17. 17.
    Mohar, B., Thomassen, C.: Graphs on surfaces. John Hopkins University Press (2001)Google Scholar
  18. 18.
    Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Nakamigawa, T.: A generalization of diagonal flips in a convex polygon. Theoretical Computer Science 235(2), 271–282 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a Non-planar Graph. Journal of Combinatorial Theory, Series B 77, 1–27 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rué, J., Sau, I., Thilikos, D.M.: Asymptotic enumeration of non-crossing partitions on surfaces. In: CoRR, abs/1104.2477 a preliminary version appeared in the Proc. of ICALP (2011), Last version,
  22. 22.
    Rué, J., Sau, I., Thilikos, D.M.: Dynamic programming for graphs on surfaces. CoRR, abs/1104.2486 (2011), to appear in ACM Transactions on Algorithms (TALG), last version available at,
  23. 23.
    Rué, J., Sau, I., Thilikos, D.M.: Dynamic Programming for H-minor-free Graphs (2012),
  24. 24.
    Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Tazari, S.: Faster approximation schemes and parameterized algorithms on (odd-) H-minor-free graphs. Theoretical Computer Science 417, 95–107 (2012)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juanjo Rué
    • 1
  • Ignasi Sau
    • 2
  • Dimitrios M. Thilikos
    • 3
  1. 1.Instituto de Ciencias MatemáticasMadridSpain
  2. 2.AlGCo project-team, CNRSLIRMMMontpellierFrance
  3. 3.Department of MathematicsNational and Kapodistrian University of AthensGreece

Personalised recommendations