Computing Shapley Value in Supermodular Coalitional Games

  • David Liben-Nowell
  • Alexa Sharp
  • Tom Wexler
  • Kevin Woods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)


Coalitional games allow subsets (coalitions) of players to cooperate to receive a collective payoff. This payoff is then distributed “fairly” among the members of that coalition according to some division scheme. Various solution concepts have been proposed as reasonable schemes for generating fair allocations. The Shapley value is one classic solution concept: player i’s share is precisely equal to i’s expected marginal contribution if the players join the coalition one at a time, in a uniformly random order. In this paper, we consider the class of supermodular games (sometimes called convex games), and give a fully polynomial-time randomized approximation scheme (FPRAS) to compute the Shapley value to within a (1 ±ε) factor in monotone supermodular games. We show that this result is tight in several senses: no deterministic algorithm can approximate Shapley value as well, no randomized algorithm can do better, and both monotonicity and supermodularity are required for the existence of an efficient (1 ±ε)-approximation algorithm. We also argue that, relative to supermodularity, monotonicity is a mild assumption, and we discuss how to transform supermodular games to be monotonic.


Cooperative Game Solution Concept Multicast Tree Marginal Contribution Grand Coalition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archer, A., Feigenbaum, J., Krishnamurthy, A., Sami, R., Shenker, S.: Approximation and collusion in multicast cost sharing. Games and Economic Behavior 47, 36–71 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aziz, H.: Algorithmic and complexity aspects of simple coalitional games. PhD thesis, University of Warwick (2009)Google Scholar
  3. 3.
    Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A.D., Rosenschein, J.S., Saberi, A.: Approximating power indices: theoretical and empirical analysis. In: Autonomous Agents and Multi-Agent Systems, vol. 20, pp. 105–122 (2010)Google Scholar
  4. 4.
    Banzhaf, J.F.: Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review 19, 317–343 (1965)Google Scholar
  5. 5.
    Barua, R., Chakravarty, S.R., Roy, S.: Measuring power in weighted majority games. Technical report. Department of Economics, Iowa State University (2007)Google Scholar
  6. 6.
    Bonacich, P.: Power and centrality: A family of measures. American Journal of Sociology 92(5), 1170–1182 (1987)CrossRefGoogle Scholar
  7. 7.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)CrossRefGoogle Scholar
  8. 8.
    Curiel, I.J., Maschler, M., Tijs, S.: Bankruptcy games. Zeitschrift für Operations Research 31, 143–159 (1987)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Davis, M., Maschler, M.: The kernel of a cooperative game. Naval Research Logistics Quarterly 12, 223–259 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Deegan, J., Packel, E.W.: A new index of power for simple n-person games. International Journal of Game Theory 7(2), 113–123 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Deng, X., Fang, Q.: Algorithmic cooperative game theory. Pareto Optimality, Game Theory and Equilibria 17(1), 159–185 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Deng, X., Papadimitriou, C.: On the complexity of cooperative solution concepts. Mathematics of Operations Research 19(2), 257–266 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: A randomized method for the Shapley value for the voting game. In: Proc. 6th Conference on Autonomous Agents and Multiagent Systems, pp. 955–962 (May 2007)Google Scholar
  14. 14.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: A linear approximation method for the Shapley value. Artificial Intelligence 172(14), 1673–1699 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Feigenbaum, J., Papadimitriou, C., Shenker, S.: Sharing the cost of multicast transmissions. J. Computing Systems Sciences 63, 21–41 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Felsenthal, D., Machover, M.: The measurement of voting power: Theory and practice, problems and paradoxes. Public Choice 102(3-4), 373–376 (2000)Google Scholar
  17. 17.
    Gillies, D.B.: Solutions to general non-zero-sum games. Contributions to the Theory of Games 4, 47–85 (1959)MathSciNetGoogle Scholar
  18. 18.
    Herzog, S., Shenker, S., Estrin, D.: Sharing the “cost” of multicast trees: an axiomatic analysis. IEEE/ACM Transactions on Networking 5, 847–860 (1997)CrossRefGoogle Scholar
  19. 19.
    Ieong, S., Shoham, Y.: Marginal contribution nets: a compact representation scheme for coalitional games. In: Proc. 6th ACM Conference on Electronic Commerce (2005)Google Scholar
  20. 20.
    Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions. In: Proc. 32nd Symposium on Theory of Computing, pp. 97–106 (2000)Google Scholar
  21. 21.
    Jain, K., Vazirani, V.: Applications of approximation algorithms to cooperative games. In: Proc. 33rd ACM Symposium on Theory of Computing (2001)Google Scholar
  22. 22.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)zbMATHCrossRefGoogle Scholar
  23. 23.
    Kleinberg, J., Tardos, E.: Balanced outcomes in social exchange networks. In: Proc. 40th Symposium on Theory of Computing (2008)Google Scholar
  24. 24.
    Leech, D.: An empirical comparison of the performance of classical power indices. Political Studies 50(1), 1–22 (2002)CrossRefGoogle Scholar
  25. 25.
    Mann, I., Shapley, L.S.: Values of large games, IV: Evaluating the electoral college by Monte-Carlo techniques. Technical report. The Rand Corporation, Santa Monica, CA (1960)Google Scholar
  26. 26.
    Maschler, M., Peleg, B., Shapley, L.S.: The kernel and bargaining set for convex games. International Journal of Game Theory 1, 73–93 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Maschler, M., Peleg, B., Shapley, L.S.: Geometric properties of the kernel, nucleolus, and related solution concepts. Mathematics of Operations Research 4(4), 303–338 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Matsui, Y., Matsui, T.: A survey of algorithms for calculating power indices of weighted majority games. Journal of the Operations Research Society of Japan 43(1), 71–86 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Matsui, Y., Matsui, T.: NP-completeness for calculating power indices of weighted majority games. Theoretical Computer Science 263(1-2), 305–310 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Motwani, R., Raghavan, P.: Randomized Algorithms, Cambridge (1995)Google Scholar
  31. 31.
    O’Neill, B.: A problem of rights arbitration from the Talmud. Mathematical Social Sciences 2(4), 345–371 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory B 80, 346–355 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Schulz, A.S., Uhan, N.A.: Approximating the least core value and least core of cooperative games with supermodular costs. Working paper (2010)Google Scholar
  34. 34.
    Schulz, A.S., Uhan, N.A.: Sharing supermodular costs. Operations Research 58(4), 1051–1056 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Shapley, L.S.: A value for n-person games. In: Kuhn, H., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press (1953)Google Scholar
  36. 36.
    Shapley, L.S.: Cores of convex games. International Journal of Game Theory 1, 11–26 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Shapley, L.S., Shubik, M.: On the core of an economic system with externalities. American Economic Review 59, 678–684 (1969)Google Scholar
  38. 38.
    Topkis, D.M.: Minimizing a submodular function on a lattice. Operations Research 26(2), 305–321 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Yao, A.C.: Probabilistic computations: Toward a unified measure of complexity. In: Proc. 18th Symposium on Foundations of Computer Science, pp. 222–227 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Liben-Nowell
    • 1
  • Alexa Sharp
    • 2
  • Tom Wexler
    • 2
  • Kevin Woods
    • 3
  1. 1.Department of Computer ScienceCarleton CollegeUSA
  2. 2.Department of Computer ScienceOberlin CollegeUSA
  3. 3.Department of MathematicsOberlin CollegeUSA

Personalised recommendations