Complementary Vertices and Adjacency Testing in Polytopes

  • Benjamin A. Burton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)


Our main theoretical result is that, if a simple polytope has a pair of complementary vertices (i.e., two vertices with no facets in common), then it has a second such pair. Using this result, we improve adjacency testing for vertices in both simple and non-simple polytopes: given a polytope in the standard form \(\{\mathbf{x}\in\mathbb{R}^n\,|\,A\mathbf{x}=\mathbf{b}\ \mbox{and}\ \mathbf{x}\geq 0\}\) and a list of its V vertices, we describe an O(n) test to identify whether any two given vertices are adjacent. For simple polytopes this test is perfect; for non-simple polytopes it may be indeterminate, and instead acts as a filter to identify non-adjacent pairs. Our test requires an O(n 2 V + nV 2) precomputation, which is acceptable in settings such as all-pairs adjacency testing. These results improve upon the more general O(nV) combinatorial and O(n 3) algebraic adjacency tests from the literature.


polytopes complementary vertices disjoint facets adjacent vertices vertex enumeration double description method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avis, D.: A revised implementation of the reverse search vertex enumeration algorithm. In: Polytopes—Combinatorics and Computation (Oberwolfach, 1997), DMV Sem., vol. 29, pp. 177–198. Birkhäuser, Basel (2000)Google Scholar
  2. 2.
    Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Avis, D., Rosenberg, G.D., Savani, R., von Stengel, B.: Enumeration of Nash equilibria for two-player games. Econom. Theory 42(1), 9–37 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Benson, H.P.: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global Optim. 13(1), 1–24 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Burton, B.A.: Optimizing the double description method for normal surface enumeration. Math. Comp. 79(269), 453–484 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Felikson, A., Tumarkin, P.: Coxeter polytopes with a unique pair of non-intersecting facets. J. Combin. Theory Ser. A 116(4), 875–902 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Jansen, M.J.M.: Maximal Nash subsets for bimatrix games. Naval Res. Logist. Quart. 28(1), 147–152 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kim, E.D., Santos, F.: An update on the Hirsch conjecture. Jahresber. Dtsch. Math.-Ver. 112(2), 73–98 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Klee, V., Walkup, D.W.: The d-step conjecture for polyhedra of dimension d < 6. Acta Math. 117, 53–78 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting and Searching, 2nd edn. Addison-Wesley, Reading (1998)Google Scholar
  12. 12.
    Lemke, C.E., Howson Jr., J.T.: Equilibrium points of bimatrix games. J. Soc. Indust. Appl. Math. 12(2), 413–423 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17, 179–184 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The double description method. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Vol. II. Annals of Mathematics Studies, vol. 28, pp. 51–73. Princeton University Press, Princeton (1953)Google Scholar
  15. 15.
    Santos, F.: A counterexample to the Hirsch conjecture. To appear in Ann. of Math. (2) (2010), arXiv: 1006.2814Google Scholar
  16. 16.
    Winkels, H.M.: An algorithm to determine all equilibrium points of a bimatrix game. In: Game Theory and Related Topics (Proc. Sem., Bonn and Hagen, 1978), pp. 137–148. North-Holland, Amsterdam (1979)Google Scholar
  17. 17.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benjamin A. Burton
    • 1
  1. 1.School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations