On the Advice Complexity of Tournaments

  • Sebastian Ben Daniel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)


Advice complexity, introduced by Karp and Lipton, asks how many bits of “help” suffice to accept a given language. This is a notion that contains aspects both of informational and computational complexity, and captures non-uniform complexity. We are concerned with the connection between this notion and P-selective sets. The main question we study in our paper is how complex should the advice be as a function of the power of the interpreter, from the standpoint of average-case complexity. In the deterministic case, Ko proved that quadratic advice suffices, and Hemaspaandra and Torenvliet showed that linear advice is required. A long standing open problem is the question how to close this gap. We prove that in the probabilistic case linear size advice is enough, as long as this advice depends on the randomness. This is the first sub-quadratic result for the class P-sel for bounded-error probabilistic machines. As a consequence, several Karp-Lipton type theorems are obtained. Our methods are based on several fundamental concepts of theoretical computer science, as hardness amplification and Von Neumann’s Minimax theorem, and demonstrate surprising connections between them and the seemingly unrelated notion of selectivity.


Polynomial Time Turing Machine Probabilistic Polynomial Time Random Coin Probabilistic Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Althfer, I.: On sparse approximations to randomized strategies and convex combinations. Linear Algebra and its Applications 199(Suppl. 1), 339–355 (1994); Special Issue Honoring Ingram Olkin Google Scholar
  2. 2.
    Amir, A., Beigel, R., Gasarch, W.I.: Some connections between bounded query classes and non-uniform complexity. ECCC 7(024) (2000)Google Scholar
  3. 3.
    Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. In: Proc. of the 31st IEEE Symp. on Foundations of Computer Science, pp. 16–25 (1990)Google Scholar
  4. 4.
    Balcázar, J., Book, R.V., Schöning, U.: Sparse sets lowness and highness. SIAM J. Comput. 15, 739–747 (1986)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Balcázar, J.L., Book, R.V., Schöning, U.: The polynomial-time hierarchy and sparse oracles. J. ACM 33, 603–617 (1986)zbMATHCrossRefGoogle Scholar
  6. 6.
    Beigel, R.: Personal communication. Weak Approximation, Help Bits, and the Complexity of Optimization Problems (2005)Google Scholar
  7. 7.
    Beigel, R., Fortnow, L., Pavan, A.: Membership comparable and P-selective sets. Technical Report 2002-006N. NEC Research Institute (2008)Google Scholar
  8. 8.
    Beimel, A., Ben Daniel, S.A., Kushilevitz, E., Weinreb, E.: Choosing, Agreeing, and Eliminating in Communication Complexity. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 451–462. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Bogdanov, A., Safra, S.: Hardness amplification for errorless heuristics. In: Annual IEEE Symposium on Foundations of Computer Science, vol. 0, pp. 418–426 (2007)Google Scholar
  10. 10.
    Buhrman, H., Torenvliet, L.: P-selective self-reducible sets: A new characterization of p. J. Comput. Syst. Sci. 53(2), 210–217 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Buhrman, H., Torenvliet, L., van Emde Boas, P.: Twenty questions to a P-selector. Inf. Process. Lett. 48(4), 201–204 (1993)CrossRefGoogle Scholar
  12. 12.
    Buhrman, H., van Helden, P., Torenvliet, L.: P-selective self-reducibles sets: a new characterization of p. In: Proceedings of the Eighth Annual Structure in Complexity Theory Conference 1993, pp. 44–51, 18–21 (1993)Google Scholar
  13. 13.
    Buresh-Oppenheim, J., Kabanets, V., Santhanam, R.: Uniform hardness amplification in NP via monotone codes. Electronic Colloquium on Computational Complexity (ECCC) 13(154) (2006)Google Scholar
  14. 14.
    Cai, J., Chakaravarthy, V., Hemaspaandra, L., Ogihara, M.: Some Karp-Lipton type theorems based on S 2 Technical Report TR-819, Department of Computer Science, University of Rochester, Rochester, NY (2001)Google Scholar
  15. 15.
    Cook, S.A., Krajícek, J.: Consequences of the provability of NP subset of or equal to P/poly. J. Symb. Log. 72(4), 1353–1371 (2007)zbMATHCrossRefGoogle Scholar
  16. 16.
    Faliszewski, P., Hemaspaandra, L.: Open questions in the theory of semifeasible computation. SIGACT News 37, 47–65 (2006)CrossRefGoogle Scholar
  17. 17.
    Faliszewski, P., Hemaspaandra, L.A.: Advice for semifeasible sets and the complexity-theoretic cost(lessness) of algebraic properties. Int. J. Found. Comput. Sci. 16(5), 913–928 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gopalan, P., Guruswami, V.: Hardness amplification within NP against deterministic algorithms. In: Annual IEEE Conference on Computational Complexity, vol. 0, pp. 19–30 (2008)Google Scholar
  19. 19.
    Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Transactions of the American Mathematical Society 117, 285–306 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hemaspaandra, E., Naik, A.V., Ogihara, M., Selman, A.L.: P-selective sets, and reducing search to decision vs. self-reducibility (1994)Google Scholar
  21. 21.
    Hemaspaandra, L.A., Naik, A.V., Ogihara, M., Selman, A.L.: Computing solutions uniquely collapses the polynomial hierarchy. SIAM J. Comput. 25(4), 697–708 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hemaspaandra, L.A., Nasipak, C., Parkins, K.: A note on linear nondeterminism, linear-sized, Karp-Lipton advice for the P-selective sets. JJUCS 4(8), 670–674 (1998)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hemaspaandra, L.A., Torenvliet, L.: Optimal advice. Theoretical Computer Science 154(2), 367–377 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Hemaspaandra, L.A., Torenvliet, L.: Theory of Semi-Feasible Algorithms. Springer, New York (2003)zbMATHGoogle Scholar
  25. 25.
    Hemaspaandra, L.A., Zhigen, J.: P-selectivity: Intersections and indices. Theoretical Computer Science 145(1-2), 371–380 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Jockusch, C.: Semirecursive sets and positive reducibility. Transactions of the American Mathematical Society 131(2), 420–436 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform complexity classes. In: STOC, pp. 302–309 (1980)Google Scholar
  28. 28.
    Ko, K.: On self-reducibility and weak P-selectivity. JCSS 26(2), 209–221 (1983)zbMATHGoogle Scholar
  29. 29.
    Lipton, R., Young, N.E.: Simple strategies for large zero-sum games with applications to complexity theory. In: Proceedings of ACM Symposium on Theory of Computing, pp. 734–740 (1994)Google Scholar
  30. 30.
    Lund, C., Fortnow, L., Karloff, H.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. of the ACM 41(5), 960–981 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Moon, J.W.: An extension of Landau’s theorem on tournaments. Pacific J. Math. 13, 1343–1345 (1963)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Moon, J.W.: Topics on tournaments. Rinehart and Winston, New York (1968)zbMATHGoogle Scholar
  34. 34.
    Von Neumann, J.: Zur theorie der gesellschaftsspiele. Mathematische Annalen 100(1), 295–320 (1928)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    O’Donnell, R.: Hardness amplification within NP. In: STOC 2002: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 751–760. ACM, New York (2002)CrossRefGoogle Scholar
  36. 36.
    Ogihara, M.: Polynomial-time membership comparable sets. SIAM J. Comput. 24(5), 1068–1081 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Selman, A.L.: P-Selective Sets, Tally Languages, and the Behavior of Polynomial Time Reducibilities on NP. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 546–555. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  38. 38.
    Selman, A.L.: Analogues of semicursive sets and effective reducibilities to the study of NP complexity. Information and Control 52(1), 36–51 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Baker, T., Gill, J., Solovay, R.: Relativizations of the \( \mathcal{P} =? \mathcal{NP}\) question. SIAM Journal on Computing 4(4), 431–442 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Thakur, M.: On optimal advice for P-selective sets. Technical Report TR-819, Department of Computer Science. University of Rochester, Rochester, NY (2003)Google Scholar
  41. 41.
    Toda, S.: On polynomial-time truth-table reducibility of intractable sets to P-selective sets. Theory of Computing Systems 24, 69–82 (1991), doi:10.1007/BF02090391MathSciNetzbMATHGoogle Scholar
  42. 42.
    Trevisan, L.: List-decoding using the XOR lemma. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2003, pp. 126–135. IEEE Computer Society, Washington, DC (2003)CrossRefGoogle Scholar
  43. 43.
    Trevisan, L.: On uniform amplification of hardness in NP. In: STOC 2005: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 31–38. ACM, New York (2005)CrossRefGoogle Scholar
  44. 44.
    Trevisan, L., Vadhan, S.P.: Pseudorandomness and average-case complexity via uniform reductions. Computational Complexity 16(4), 331–364 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Viola, E.: The complexity of constructing pseudorandom generators from hard functions. Computational Complexity 13, 147–188 (2005), doi:10.1007/s00037-004-0187-1MathSciNetCrossRefGoogle Scholar
  46. 46.
    Wang, J.: Some results on selectivity and self-reducibility. Inf. Proc. Letters 55(2), 81–87 (1995)zbMATHCrossRefGoogle Scholar
  47. 47.
    Yao, A.C.: Some complexity questions related to distributed computing. In: Proc. of the 11th ACM Symp. on the Theory of Computing, pp. 209–213 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian Ben Daniel
    • 1
  1. 1.Dept. of Computer ScienceBen-Gurion UniversityBeer ShevaIsrael

Personalised recommendations