On the Kernelization Complexity of Problems on Graphs without Long Odd Cycles

  • Fahad Panolan
  • Ashutosh Rai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)


Several NP-hard problems, like Maximum Independent Set, Coloring, and Max-Cut are polynomial time solvable on bipartite graphs. An equivalent characterization of bipartite graphs is that it is the set of all graphs that do not contain any odd length cycle. Thus, a natural question here is what happens to the complexity of these problems if we know that the length of the longest odd cycle is bounded by k? Let \({\mathcal O}_k\) denote the set of all graphs G such that the length of the longest odd cycle is upper bounded by k. Hsu, Ikura and Nemhauser [Math. Programming, 1981] studied the effect of avoiding long odd cycle for the Maximum Independent Set problem and showed that a maximum sized independent set on a graph \(G\in{\mathcal O}_k\) on n vertices can be found in time n O(k). Later, Grötschel and Nemhauser [Math. Programming, 1984] did a similar study for Max-Cut and obtained an algorithm with running time n O(k) on a graph \(G\in{\mathcal O}_k\) on n vertices.

In this paper, we revisit these problems together with q -Coloring and observe that all of these problems admit algorithms with running time O(c k n O(1)) on a graph \(G\in{\mathcal O}_k\) on n vertices. Thus, showing that all these problems are fixed parameter tractable when parameterized by the length of the longest odd cycle of the input graph. However, following the recent trend in parameterized complexity, we also study the kernelization complexity of these problems. We show that Maximum Independent Set, q -Coloring for some fixed q ≥ 3 and Max-Cut do not admit a polynomial kernel unless \(\mbox{\sc co-NP} \subseteq \mbox{\sc NP}/\mbox{\textrm{poly}}\), when parameterized by k, the length of the longest odd cycle.


Bipartite Graph Vertex Cover Parameterized Problem Polynomial Kernel Tree Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)Google Scholar
  2. 2.
    Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a tight lower bound. In: SODA, pp. 511–517 (2010)Google Scholar
  3. 3.
    Birmele, E.: Tree-width and circumference of graphs. Journal of Graph Theory 43(1), 24–25 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (meta) kernelization. In: FOCS, pp. 629–638 (2009)Google Scholar
  7. 7.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Bodlaender, H.L., Thomassé, S., Yeo, A.: Analysis of data reduction: Transformations give evidence for non-existence of polynomial kernels. Technical report (2008)Google Scholar
  9. 9.
    Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In: STOC, pp. 251–260 (2010)Google Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity, 530 p. Springer (1999)Google Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus (2006)Google Scholar
  12. 12.
    Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: SODA, pp. 503–510 (2010)Google Scholar
  13. 13.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: STOC, pp. 133–142 (2008)Google Scholar
  14. 14.
    Grötschel, M., Nemhauser, G.L.: A polynomial algorithm for the max-cut problem on graphs without long odd cycles. Math. Programming 29(1), 28–40 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  16. 16.
    Hsu, W.L., Ikura, Y., Nemhauser, G.L.: A polynomial algorithm for maximum weighted vertex packings on graphs without long odd cycles. Math. Programming 20(2), 225–232 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited: Upper and lower bounds for a refined parameter. In: STACS, pp. 177–188 (2011)Google Scholar
  18. 18.
    Jansen, B.M.P., Kratsch, S.: Data Reduction for Graph Coloring Problems. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 90–101. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Jansen, B.M.P., Kratsch, S.: On Polynomial Kernels for Structural Parameterizations of Odd Cycle Transversal. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 132–144. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for odd cycle transversal. In: SODA, pp. 94–103 (2012)Google Scholar
  21. 21.
    Niedermeier, R.: Invitation to Fixed Parameter Algorithms (Oxford Lecture Series in Mathematics and Its Applications). Oxford University Press, USA (2006)CrossRefGoogle Scholar
  22. 22.
    Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fahad Panolan
    • 1
  • Ashutosh Rai
    • 1
  1. 1.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations