Succinct Representations of Binary Trees for Range Minimum Queries

  • Pooya Davoodi
  • Rajeev Raman
  • Srinivasa Rao Satti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)


We provide two succinct representations of binary trees that can be used to represent the Cartesian tree of an array A of size n. Both the representations take the optimal 2n + o(n) bits of space in the worst case and support range minimum queries (RMQs) in O(1) time. The first one is a modification of the representation of Farzan and Munro (SWAT 2008); a consequence of this result is that we can represent the Cartesian tree of a random permutation in 1.92n + o(n) bits in expectation. The second one uses a well-known transformation between binary trees and ordinal trees, and ordinal tree operations to effect operations on the Cartesian tree. This provides an alternative, and more natural, way to view the 2D-Min-Heap of Fischer and Huen (SICOMP 2011). Furthermore, we show that the pre-processing needed to output the data structure can be performed in linear time using o(n) bits of extra working space, improving the result of Fischer and Heun who use n + o(n) bits working space.


Binary Tree Left Child Lower Common Ancestor Succinct Representation Output String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Farzan, A., Munro, J.I.: A Uniform Approach Towards Succinct Representation of Trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 173–184. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Farzan, A., Raman, R., Rao, S.S.: Universal Succinct Representations of Trees? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 451–462. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Fischer, J.: Optimal Succinctness for Range Minimum Queries. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing, pp. 135–143. ACM Press (1984)Google Scholar
  7. 7.
    Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation for balanced parentheses. Theoretical Computer Science 368(3), 231–246 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor queries. ACM Transactions on Algorithms 2(4), 510–534 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D Range Maximum Queries. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13(2), 338–355 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    He, M., Munro, J.I.J., Rao, S.S.: Succinct Ordinal Trees Based on Tree Covering. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 509–520. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Jacobson, G.: Succinct Static Data Structures. PhD thesis. Carnegie Mellon University, Pittsburgh, PA, USA (1989)Google Scholar
  13. 13.
    Lu, H.-I., Yeh, C.-C.: Balanced parentheses strike back. ACM Transactions on Algorithms 4(3) (2008)Google Scholar
  14. 14.
    Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM Journal on Computing 31(3), 762–776 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary trees succinctly. In: Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 529–536. SIAM (2001)Google Scholar
  16. 16.
    Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms 3(4) (2007)Google Scholar
  17. 17.
    Sadakane, K.: Succinct representations of lcp information and improvements in the compressed suffix arrays. In: Proc. 13th Symposium on Discrete Algorithms, pp. 225–232 (2002)Google Scholar
  18. 18.
    Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal of Discrete Algorithms 5(1), 12–22 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 134–149. SIAM (2010)Google Scholar
  20. 20.
    Vuillemin, J.: A unifying look at data structures. Communications of the ACM 23(4), 229–239 (1980)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pooya Davoodi
    • 1
  • Rajeev Raman
    • 2
  • Srinivasa Rao Satti
    • 3
  1. 1.Polytechnic Institute of New York UniversityUnited States
  2. 2.University of LeicesterUnited Kingdom
  3. 3.Seoul National UniversitySouth Korea

Personalised recommendations