Multilevel Drawings of Clustered Graphs

  • Fabrizio Frati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)


The cluster adjacency graph of a flat clustered graph C(G,T) is the graph A whose vertices are the clusters in T and whose edges connect clusters containing vertices that are adjacent in G. A multilevel drawing of a clustered graph C consists of a straight-line c-planar drawing of C in which the clusters are drawn as convex regions and of a straight-line planar drawing of A such that each vertex a ∈ A is drawn in the cluster corresponding to a and such that no edge (a 1,a 2) ∈ A intersects any cluster different from a 1 and a 2. In this paper, we show that every c-planar flat clustered graph admits a multilevel drawing.


Extension Region Common Neighbor Internal Vertex Outer Face Convex Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelini, P., Frati, F., Kaufmann, M.: Straight-line rectangular drawings of clustered graphs. Discrete & Computational Geometry 45(1), 88–140 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Di Battista, G., Drovandi, G., Frati, F.: How to draw a clustered tree. J. Discrete Algorithms 7(4), 479–499 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with small faces. J. Graph Alg. Appl. 13(3), 349–378 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Eades, P., Feng, Q.: Multilevel Visualization of Clustered Graphs. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 101–112. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Eades, P., Feng, Q., Nagamochi, H.: Drawing clustered graphs on an orthogonal grid. J. Graph Alg. Appl. 3(4), 3–29 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Feng, Q.: Algorithms for drawing clustered graphs. Ph. D. thesis. The University of Newcastle, Australia (1997)Google Scholar
  8. 8.
    Feng, Q., Cohen, R.F., Eades, P.: How to Draw a Planar Clustered Graph. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 21–30. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Feng, Q., Cohen, R.F., Eades, P.: Planarity for Clustered Graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Jelínková, E., Kára, J., Kratochvíl, J., Pergel, M., Suchý, O., Vyskocil, T.: Clustered planarity: Small clusters in cycles and Eulerian graphs. J. Graph Alg. Appl. 13(3), 379–422 (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Jünger, M., Leipert, S., Percan, M.: Triangulating clustered graphs. Technical report. Zentrum für Angewandte Informatik Köln (2002)Google Scholar
  12. 12.
    Nagamochi, H., Kuroya, K.: Drawing c-planar biconnected clustered graphs. Discr. Appl. Math. 155(9), 1155–1174 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13(52), 743–768 (1963)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fabrizio Frati
    • 1
  1. 1.School of Information TechnologiesThe University of SydneyAustralia

Personalised recommendations