Advertisement

Approximating the Rainbow – Better Lower and Upper Bounds

  • Alexandru Popa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)

Abstract

In this paper we study the minimum rainbow subgraph problem, motivated by applications in bioinformatics. The input of the problem consists of an undirected graph where each edge is coloured with one of the p possible colors. The goal is to find a subgraph of minimum order (i.e. minimum number of vertices) which has precisely one edge from each color class.

In this paper we show a \(\max(\sqrt{2p}, \min_q(q + \frac{\Delta}{e^{p q^2/\Delta n}}))\)-approximation algorithm using LP rounding, where Δ is the maximum degree in the input graph. In particular, this is a \(\max(\sqrt{2n}, \sqrt{2\Delta\ln{\Delta}})\)-approximation algorithm. On the other hand we prove that there exists a constant c such that the minimum rainbow subgraph problem does not have a cln Δ-approximation, unless NP ⊆ TIME(n O(loglogn)).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Jiang, T., Miller, Z., Pritikin, D.: Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints. Random Structures & Algorithms 23(4), 409–433 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Discrete Applied Mathematics 121(1-3), 15–26 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bland, R.G., Goldfarb, D., Todd, M.J.: The ellipsoid method: A survey. Operations Research 29(6), 1039–1091 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Camacho, S.M., Schiermeyer, I., Tuza, Z.: Approximation algorithms for the minimum rainbow subgraph problem. Discrete Mathematics 310(20), 2666–2670 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Catanzaro, D., Labb, M.: The pure parsimony haplotyping problem: overview and computational advances. International Transactions in Operational Research 16(5), 561–584 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Erdős, P., Tuza, Z.: Rainbow subgraphs in edge-colorings of complete graphs. In: Kennedy, J.W., Gimbel, J., Quintas, L.V. (eds.) Quo Vadis, Graph Theory? A Source Book for Challenges and Directions. Annals of Discrete Mathematics, vol. 55, pp. 81–88. Elsevier (1993)Google Scholar
  7. 7.
    Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gusfield, D.: Haplotype Inference by Pure Parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Hahn, G., Thomassen, C.: Path and cycle sub-Ramsey numbers and an edge-colouring conjecture. Discrete MathematicsGoogle Scholar
  10. 10.
    Hajiaghayi, M.T., Jain, K., Lau, L.C., Mandoiu, I.I., Russell, A., Vazirani, V.V.: Minimum multicolored subgraph problem in multiplex pcr primer set selection and population haplotyping. In: International Conference on Computational Science, vol. (2), pp. 758–766 (2006)Google Scholar
  11. 11.
    Huang, Y.-T., Chao, K.-M., Chen, T.: An approximation algorithm for haplotype inference by maximum parsimony. In: SAC 2005, pp. 146–150 (2005)Google Scholar
  12. 12.
    Hubbell, E.: Unpublished manuscript (2002)Google Scholar
  13. 13.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  14. 14.
    Katrenič, J., Schiermeyer, I.: Improved approximation bounds for the minimum rainbow subgraph problem. Inf. Process. Lett. 111(3), 110–114 (2011)CrossRefGoogle Scholar
  15. 15.
    Koch, M., Camacho, S.M., Schiermeyer, I.: Algorithmic approaches for the minimum rainbow subgraph problem. Electronic Notes in Discrete Mathematics 38(0), 765–770 (2011)CrossRefGoogle Scholar
  16. 16.
    Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsimony: Complexity of exact and approximation algorithms. INFORMS Journal on Computing 16(4), 348–359 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lancia, G., Rizzi, R.: A polynomial case of the parsimony haplotyping problem. Oper. Res. Lett. 34(3), 289–295 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Rődl, V., Tuza, Z.: Rainbow subgraphs in properly edge-colored graphs. Random Structures & Algorithms 3(2), 175–182 (1992)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Simonovits, M., Sós, V.T.: On restricted colourings of K n. Combinatorica 4(1), 101–110 (1984)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexandru Popa
    • 1
  1. 1.Department of Communications & NetworkingAalto University School of Electrical EngineeringAaltoFinland

Personalised recommendations