Earth System Modelling and Data Analysis

  • Gerrit Lohmann
  • Klaus Grosfeld
  • Dieter Wolf-Gladrow
  • Anna Wegner
  • Justus Notholt
  • Vikram Unnithan
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)


During the Last Interglacial (LIG), the northern high latitudes showed summer temperatures higher than those of the late Holocene, and a significantly reduced Greenland Ice Sheet (GIS). We perform sensitivity studies for the height and extent of the GIS at the beginning of the LIG [130 kyr before present (BP)], using the COSMOS coupled atmosphere–ocean general circulation model. Different methods are deployed in order to change the GIS height and surface area. Our experimental approach also considers the Earth’s orbital parameters for 130 kyr BP, since insolation changes are considered to be the main driver of LIG warmth. We analyze resulting anomalies in surface air temperature and sea ice cover. Our study shows that a strong Northern Hemisphere warming indeed is mainly caused by increased summer insolation. Changes in GIS elevation, surface area, and albedo contribute to the overall warming of the LIG, but any of these changed model boundary conditions lead to a weaker effect than the adjusted orbital forcing.


Atlantic Meridional Overturning Circulation Before Present North Atlantic Deep Water Northern High Latitude Nino3 Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Angeles ME, Gonzalez JE, Erickson DJ III, Hernández JL (2007) Predictions of future climate change in the caribbean region using global general circulation models. International J Climatol 27:555–569CrossRefGoogle Scholar
  2. Baertschi P (1976) Absolute 18O of standard mean ocean water. Earth Planet Sci 31:341–344CrossRefGoogle Scholar
  3. Barber DC, Dyke A, Hillaire-Marcel C, Jennings AE, Andrews JT, Kerwin MW, Bilodeau G, McNeely R, Southon J, Morehead MD, Gagnonk J-M (1999) Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400:344–348CrossRefGoogle Scholar
  4. Berger AL (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  5. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt C (2007a) Results of PMIP2 coupled simulations of the mid-holocene and last glacial maximum-part 1: experiments and large-scale features. Clim Past 3:261–277CrossRefGoogle Scholar
  6. Braconnot P et al (2007b) Results of PMIP2 coupled simulations of the mid-holocene and last glacial maximum—part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Clim Past 3:279–296CrossRefGoogle Scholar
  7. Broecker WS (1986) Oxygen isotope constraints on surface ocean temperatures. Quat Res 26:121–134CrossRefGoogle Scholar
  8. Brovkin V, Raddatz T, Reick CH, Claussen M, Gayler V (2009) Global biogeophysical interactions between forest and climate. Geophys Res Lett 36. doi: 10.1029/2009GL037543
  9. Clement AC, Seager R, Cane MA (2000) Suppression of El nino during the mid-holocene by changes in the Earth’s orbit. Paleoceanogr 15:731–737CrossRefGoogle Scholar
  10. Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: Tongiogi E (ed) Proceeing stable isotopes in oceanographic studies and paleotemperatures, Spoleto, Italy, pp 9–130 Google Scholar
  11. Crowley TJ, Kim K-Y (1994) Milankovitch forcing of the last interglacial sea level. Science 265:1566–1568CrossRefGoogle Scholar
  12. Crucifix M, Braconnot P, Harrison SP, Otto-Bliesner B (2005) Second phase of paleoclimate modelling intercomparison project. Eos Trans AGU 86 Google Scholar
  13. Dansgaard W, Johnsen S, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjoernsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220. doi: 10.1038/364218a0 CrossRefGoogle Scholar
  14. Dickson RR, Lazier J, Meincke J, Rhines P, Swift J (1996) Long-term co-ordinated changes in the convective activity of the North Atlantic Prog Oceanogr 38(3):241–295(55)Google Scholar
  15. Drysdale RN, Hellstrom JC, Zanchetta G, Fallick AE, Sánchez Gõni MF, Couchoud I, McDonald J, Maas R, Lohmann G, Isola I (2009) Evidence for obliquity forcing of glacial termination II. Science 325:1527–1531. doi:  10.1126/science.1170371
  16. Duplessy JC, Labeyrie LD, Juillet-Leclerc A, Maitre F, Duprat J, Sarnthein M (1991) Surface salinity reconstruction of the North Atlantic ocean during the last glacial maximum. Oceanol Acta 14:311–324Google Scholar
  17. Felis T, Lohmann G, Kuhnert H, Lorenz SJ, Scholz D, Pätzold J, Al Rousan SA, Al-Moghrabi SM (2004) Increased seasonality in Middle East temperatures during the last interglacial period. Nature 429:164–168CrossRefGoogle Scholar
  18. Giannini A, Kushnir Y, Cane MA (2000) Interannual variability of caribbean rainfall, ENSO, and the Atlantic ocean. J Clim 13:297–311CrossRefGoogle Scholar
  19. Gill A (1982) Atmosphere-Ocean dynamics. Int Geophys Ser, Vol 30. Academic Press, LondonGoogle Scholar
  20. Giry C, Felis T, Kölling M, Scholz D, Wei W, Scheffers S (2012) Mid- to late holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern caribbean coral records. Earth Plan Sci Lett (in press)Google Scholar
  21. Hagemann S, Gates L (2003) Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations. Clim Dyn 21:349–359CrossRefGoogle Scholar
  22. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the holocene. Science 293:1304CrossRefGoogle Scholar
  23. Herold M, Lohmann G (2009) Eemian tropical and subtropical African moisture transport: an isotope modelling study. Clim Dyn 33:1075–1088. doi: 10.1007/s00382-008-0515-2 CrossRefGoogle Scholar
  24. Hibler WD III (1979) A dynamic thermodynamic sea ice model. J Phys Ocean 9:815–846CrossRefGoogle Scholar
  25. Hoffmann G, Werner M, Heimann M (1998) Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years. J Geophys Res, 103, 14, 16,871–16,896Google Scholar
  26. Hseih W, Davey M, Wajsowicz R (1983) The free Kelvin wave in finite difference models. J Phys Oceanogr 13(8):1383–1397. doi: 10.1175/1520-0485 CrossRefGoogle Scholar
  27. Jansen E et al (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  28. Johnson HL, Marshall DP (2002) A theory for the surface Atlantic response to thermohaline variability. J Phys Oceanogr 32(4):1121–1132CrossRefGoogle Scholar
  29. Joussaume J, Sadourny R, Jouzel J (1984) A general circulation model of water isotope cycles in the atmosphere. Nature 311:24–29CrossRefGoogle Scholar
  30. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Climate 19:3952–3972CrossRefGoogle Scholar
  31. Kaspar F, Cubasch U (2007) Simulations of the eemian interglacial and the subsequent glacial inception with a coupled ocean atmosphere general circulation model. In: Sirocko F, Litt T, Claussen M, Sánchez-Goñi MF (eds) The climate of past interglacials, pp 499–515, Elsevier, Developments in quaternary sciences 7, Chapter 33Google Scholar
  32. Knudsen MF, Seidenkrantz MS, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nature Com 2:178CrossRefGoogle Scholar
  33. Kutzbach JE, Gallimore RG, Guetter PJ (1991) Sensitivity experiments on the effect of orbitally-caused insolation changes on the interglacial climate of high northern latitudes. Quatern Int 10–12:223–229CrossRefGoogle Scholar
  34. Lohmann G (2003) Atmospheric and oceanic freshwater transport during weak Atlantic overturning circulation. Tellus 55(A):438–449Google Scholar
  35. Lorenz SJ, Lohmann G (2004) Acceleration technique for milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the holocene. Clim Dyn 23:727–743CrossRefGoogle Scholar
  36. Manabe S, Stouffer RJ (1993) Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system. Nature 364:215–218CrossRefGoogle Scholar
  37. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roeske F (2003a) The Max Planck Institute global ocean/sea-ice model with orthogonal curvilinear coordinates. Ocean Modell 5:91–127CrossRefGoogle Scholar
  38. Maßmann S, Androsov A, Danilov S (2008) Intercomparison between finite element and finite volume approaches to model North sea tides. Cont Shelf Res 30(6):680–691. doi: 10.1016/j.csr.2009.07.004 CrossRefGoogle Scholar
  39. Mearns LO, Hulme M, Carter TR, Leemans R, Lal M, Whetton P (2001) Climate scenario development. In: Houghton JT et al. (eds) Climate change 2001: the scientific basis. Cambridge University Press, New York, pp 739–768Google Scholar
  40. Montoya M, von Storch H, Crowley TJ (2000) Climate simulation for 125 kyr BP with a coupled ocean-atmosphere general circulation model. J Clim 13:1057–1071CrossRefGoogle Scholar
  41. Moy CM, Seltzer GO, Rodbell DT, Anderson DM (2002) Variability of El nino/Southern oscillation activity at millennial timescales during the holocene epoch. Nature 420:162–165CrossRefGoogle Scholar
  42. Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A (2006) CAPE Last interglacial project members: simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311:1751–1753. doi: 10.1126/science.1120808 CrossRefGoogle Scholar
  43. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dynam 29:565–574CrossRefGoogle Scholar
  44. Roeckner E, Arpe K (1995) AMIP experiments with the new max planck institute for meteorology model ECHAM4. In: Proceedings of the “AMIP scientific conference”, May 15–19, Monterey, USA, WCRP-Report No. 92, 307–312, WMO/TD-No. 732Google Scholar
  45. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part one: model description report No.349. Max Planck Institute for meteorologyGoogle Scholar
  46. Schmidt GA (1998) Oxygen-18 variations in a global ocean model. Geophys Res Lett 25:1201–1204CrossRefGoogle Scholar
  47. Schmidt GA, Bigg GR, Rohling EJ (1999) Global seawater oxygen-18 database,, NASA Goddard Institute of Space Science, NY
  48. Schmidt GA, LeGrande AN, Hoffmann G (2007) Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model. J Geophys Res 112:D10103CrossRefGoogle Scholar
  49. Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389CrossRefGoogle Scholar
  50. Sima A, Paul A, Schulz M, Oerlemans J (2006) Modeling the oxygen-isotopic composition of the North American ice sheet and its effect on the isotopic composition of the ocean during the last glacial cycle. Geophys Res Lett 33:L15706CrossRefGoogle Scholar
  51. Sowers T, Bender M (1995) Climate records covering the last deglaciation. Science 269:210–214CrossRefGoogle Scholar
  52. Steele M, Morley R, Emold W (2001) PHC: a global ocean hydrography with a high-quality arctic ocean. J Climate 14:2079–2087CrossRefGoogle Scholar
  53. Sutton RT, Hodson DLR (2005) Atlantic ocean forcing of North American and European summer climate. Science 309:115CrossRefGoogle Scholar
  54. Valcke S (2006) OASIS3 user guide (oasis3_prism_2–5). PRISM support initiative report No 3, CERFACS, Toulouse, France, p 64Google Scholar
  55. Valcke S, Caubel A, Declat D, Terray L (2003) OASIS ocean atmosphere sea ice soil users guide. Tech Rep, CERFACSGoogle Scholar
  56. Wadley MR, Bigg GR, Rohling EJ, Payne AJ (2002) On modeling present-day and last glacial maximum oceanic δ18O distributions. Global Planet Change 32:89–109CrossRefGoogle Scholar
  57. Wang Q, Danilov S, Schröter J (2008) Finite element ocean circulation model based on triangular prismatic elements, with application in studying the effect of topography representation. J Geophys Res 113:C05015. doi: 10.1029/2007JC004482 CrossRefGoogle Scholar
  58. Wei W, Lohmann G (2012) Simulated Atlantic Multidecadal Oscillation during the Holocene. J Clim (in press). doi: 10.1175/JCLI-D-11-00667.1
  59. Wei W, Lohmann G, Dima M (2012) Distinct modes of internal variability in the Global Meridional Overturning Circulation associated to the Southern Hemisphere westerly winds. J Phys Oceanogr 42:785–801. doi: 10.1175/JPO-D-11-038.1
  60. Werner M, Heimann M (2002) Modeling interannual variability of water isotopes in greenland and antarctica. J Geophys Res 107(D1) doi: 10.1029/2001JD900253

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Gerrit Lohmann
    • 1
  • Klaus Grosfeld
    • 1
  • Dieter Wolf-Gladrow
    • 1
  • Anna Wegner
    • 1
  • Justus Notholt
    • 2
  • Vikram Unnithan
    • 3
  1. 1.Alfred-Wegener-Institut für Polar und MeeresforschungBremerhavenGermany
  2. 2.Institut für Umweltwissenschaften Universität BremenBremenGermany
  3. 3.Earth and Space Science School of Engineering and ScienceJacobs University gGmbHBremenGermany

Personalised recommendations