Skip to main content

Chlorophylls and their Degradation in Nature

  • Chapter
  • First Online:
Photobiogeochemistry of Organic Matter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott MR, Denman KL, Powell TM, Richerson PJ, Richards RC, Goldman CR (1984) Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe. Limnol Oceanogr 29:862–878

    CAS  Google Scholar 

  • Abowei JFN (2010) Salinity, dissolved oxygen, pH and surface water temperature conditions in Nkoro River, Niger Delta, Nigeria. Adv J Food Sci Technol 2:36–40

    CAS  Google Scholar 

  • Abril G, Nogueira M, Etcheber H, Cabeçadas G, Lemaire E, Brogueira M (2002) Behaviour of organic carbon in nine contrasting European estuaries. Estuar Coast Shelf Sci 54:241–262

    CAS  Google Scholar 

  • Adachi M, Nakabayashi K, Azuma R, Kurata H, Takahashi Y, Shimokawa K (1999) The ethylene-induced chlorophyll catabolism of radish (Raphanus sativus L.) cotyledons: production of colorless fluorescent chlorophyll catabolite (FCC) in vitro. J Jpn Soc Hort Sci 68:1139–1145

    CAS  Google Scholar 

  • Aguirre-Gomez R, Weeks A, Boxall S (2001) The identification of phytoplankton pigments from absorption spectra. Int J Remote Sens 22:315–338

    Google Scholar 

  • Ahumada R, Matrai P, Silva N (1991) Phytoplankton biomass distribution and relationship to nutrient enrichment during an upwelling event off Concepcion bay, Chile. Boletín Sociedad Biol Concepción 62:7–19

    Google Scholar 

  • Aizaki M, Otsuki A, Fukushima T, Hosomi M, Muraoka K (1981) Application of Carlson’s trophic state index to Japanese lakes and relationships between the index and other parameters. Verh Internat Verein Limnol 21:675–681

    CAS  Google Scholar 

  • Allen GP, Salomon J, Bassoullet P, Du Penhoat Y, de Grandpre C (1980) Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment Geol 26:69–90

    Google Scholar 

  • Almodovar A, Nicola GG, Nuevo M (2004) Effects of a bloom of Planktothirix rubescens on the fish community of a Spanish reservoir. Limnetica 23:167–178

    Google Scholar 

  • Amir-Shapira D, Goldschmidt EE, Altman A (1987) Chlorophyll catabolism in senescing plant tissues: in vivo breakdown intermediates suggest different degradative pathways for citrus fruit and parsley leaves. PNAS 84:1901–1905

    CAS  Google Scholar 

  • An KG, Park SS (2002) Indirect influence of the summer monsoon on chlorophyll–total phosphorus models in reservoirs: a case study. Ecoll Model 152:191–203

    CAS  Google Scholar 

  • Anderson G (1969) Subsurface chlorophyll maximum in the northeast Pacific Ocean. Limnol Oceanogr 14:386–391

    CAS  Google Scholar 

  • Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Annu Rev Plant Physiol 37:93–136

    CAS  Google Scholar 

  • Anderson JM, Waldron J, Thorne S (1978) Chlorophyll–protein complexes of spinach and barley thylakoids: Spectral characterization of six complexes resolved by an improved electrophoretic procedure. FEBS Lett 92:227–233

    CAS  Google Scholar 

  • Anesio AM, Granéli W (2003) Increased photoreactivity of DOC by acidification: Implications for the carbon cycle in humic lakes. Limnol Oceanogr 48:735–744

    CAS  Google Scholar 

  • Anesio AM, Granéli W, Aiken GR, Kieber DJ, Mopper K (2005) Effect of humic substance photodegradation on bacterial growth and respiration in lake water. Appl Environ Microbiol 71:6267–6275

    CAS  Google Scholar 

  • Angel DL, Fiedler U, Eden N, Kress N, Adelung D, Herut B (1999) Catalase activity in macro- and microorganisms as an indicator of biotic stress in coastal water of the eastern Mediterranean Sea. Helgol Mar Res 53:209–218

    Google Scholar 

  • Annual Report 2004 (2005) Monitoring and research in Lake Kinneret. Yigal Allon Kinneret limnological laboratory IOLR report T7/2005, pp 75–76

    Google Scholar 

  • Antoniades D, Veillette J, Martineau MJ, Belzile C, Tomkins J, Pienitz R, Lamoureux S, Vincent WF (2009) Bacterial dominance of phototrophic communities in a High Arctic lake and its implications for paleoclimate analysis. Polar Sci 3:147–161

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  Google Scholar 

  • Apollonio S (1980) Primary production in Dumbell Bay in the Arctic Ocean. Mar Biol 61:41–51

    CAS  Google Scholar 

  • Araoye PA (2009) The seasonal variation of pH and dissolved oxygen (DO2) concentration in Asa lake Ilorin, Nigeria. Int J Phys Sci 4:271–274

    CAS  Google Scholar 

  • Arístegui Ruiz J, Barton ED, Montero del Pino MF, García Muñoz M, Escánez J (2003) Organic carbon distribution and water column respiration in the NW Africa-Canaries Coastal Transition Zone. Aquat Microb Ecol 33:289–301

    Google Scholar 

  • Arnott SE, Vanni MJ (1993) Zooplankton assemblages in fishless bog lakes: influence of biotic and abiotic factors. Ecology 74:2361–2380

    Google Scholar 

  • Arrigo KR (1994) Impact of ozone depletion on phytoplankton growth in the Southern Ocean: large-scale spatial and temporal variability. Mar Ecol Prog Ser 114:1–12

    CAS  Google Scholar 

  • Azoulay Shemer T, Harpaz-Saad S, Belausov E, Lovat N, Krokhin O, Spicer V, Standing KG, Goldschmidt EE, Eyal Y (2008) Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: a study of chlorophyllase expression, post-translational processing kinetics and in situ intracellular localization. Plant Physiol 148:108–118

    Google Scholar 

  • Bachmann RW, Hoyer MV, Canfield DE (2003) Predicting the frequencies of high chlorophyll levels in Florida Lakes from average chlorophyll or nutrient data. Lake Res Manage 19:229–241

    Google Scholar 

  • Bainbridge R (1957) The size, shape and density of marine phytoplankton concentrations. Biol Rev 32:91–115

    Google Scholar 

  • Baker E, Louda J (1983) Thermal aspects in chlorophyll geochemistry. Adv in Org Geochem 10:401–421

    Google Scholar 

  • Banala S, Moser S, Müller T, Kreutz C, Holzinger A, Lütz C, Kräutler B (2010) Hypermodified fluorescent chlorophyll catabolites: source of blue luminescence in senescent leaves. Angew Chem Int Ed 49:5174–5177

    CAS  Google Scholar 

  • Barañano DE, Rao M, Ferris CD, Snyder SH (2002) Biliverdin reductase: a major physiologic cytoprotectant. PNAS 99:16093–16098

    Google Scholar 

  • Barb W, Baxendale J, George P, Hargrave K (1951) Reactions of ferrous and ferric ions with hydrogen peroxide. Part II—the ferric ion reaction. Trans Faraday Soc 47:591–616

    CAS  Google Scholar 

  • Barbiero RP, Tuchman ML (2004) The deep chlorophyll maximum in Lake Superior. J Great Lakes Res 30:256–268

    CAS  Google Scholar 

  • Barlow R, Mantoura R, Gough M, Fileman T (1993) Pigment signatures of the phytoplankton composition in the northeastern Atlantic during the 1990 spring bloom. Deep Sea Res Part II 40:459–477

    Google Scholar 

  • Basu B, Pick F (1997) Phytoplankton and zooplankton development in a lowland, temperate river. J Plankton Res 19:237–253

    Google Scholar 

  • Baulch H, Schindler D, Turner M, Findlay D, Paterson M, Vinebrooke R (2005) Effects of warming on benthic communities in a boreal lake: implications of climate change. Limnol Oceanogr 50:1377–1392

    Google Scholar 

  • Baxter RM, Carey JH (1983) Evidence for photochemical generation of superoxide ion in humic waters. Nature 306:575–576

    CAS  Google Scholar 

  • Bayley S, Creed I, Sass G, Wong A (2007) Frequent regime shifts in trophic states in shallow lakes on the Boreal Plain: alternative” unstable” states? Limnol Oceanogr 52:2002–2012

    Google Scholar 

  • Bazanov MI, Berezin BD, Berezin DB et al (1999) Uspekhi khimii porfirinov (Progress in the Chemistry of Porphyrins). NII khimii SPbGU, St Petersburg

    Google Scholar 

  • Beckmann A, Hense I (2007) Beneath the surface: characteristics of oceanic ecosystems under weak mixing conditions-a theoretical investigation. Prog Oceanogr 75:771–796

    Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755

    CAS  Google Scholar 

  • Bellemare G, Bartlett S, Chua N (1982) Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. J Biol Chem 257:7762–7767

    CAS  Google Scholar 

  • Belzile C, Vincent WF, Kumagai M (2002) Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa. Limnol Oceanogr 47:95–107

    Google Scholar 

  • Berghold J, Eichmüller C, Hörtensteiner S, Kräutler B (2004) Chlorophyll breakdown in tobacco: on the structure of two nonfluorescent chlorophyll catabolites. Chem Biodivers 1:657–668

    CAS  Google Scholar 

  • Berghold J, Müller T, Ulrich M, Hörtensteiner S, Kräutler B (2006) Chlorophyll breakdown in maize: on the structure of two nonfluorescent chlorophyll catabolites. Monatsh Chem 137:751–763

    CAS  Google Scholar 

  • Berman T, Stone L, Yacobi YZ, Kaplan B, Schlichter M, Nishri A, Pollingher U (1995) Primary production and phytoplankton in Lake Kinneret: a long-term record (1972–1993). Limnol Oceanogr 40:1064–1076

    CAS  Google Scholar 

  • Bertilsson S, Tranvik LJ (2000) Photochemical transformation of dissolved organic matter in lakes. Limnol Oceanogr 45:753–762

    CAS  Google Scholar 

  • Bertilsson S, Stepanauskas R, Cuadros-Hansson R, Granéli W, Wikner J, Tranvik L (1999) Photochemically induced changes in bioavailable carbon and nitrogen pools in a boreal watershed. Aquat Microb Ecol 19:47–56

    Google Scholar 

  • Bianchi TS, Findlay S (1991) Decomposition of Hudson estuary macrophytes: Photosynthetic pigment transformations and decay constants. Estuaries Coasts 14:65–73

    CAS  Google Scholar 

  • Bianchi TS, Dawson R, Sawangwong P (1988) The effects of macrobenthic deposit-feeding on the degradation of chloropigments in sandy sediments. J Exp Mar Biol Ecol 122:243–255

    Google Scholar 

  • Bianchi TS, Findlay S, Fontvieille D (1991) Experimental degradation of plant materials in Hudson river sediments. Biogeochemistry 12:171–187

    CAS  Google Scholar 

  • Bianchi TS, Findlay S, Dawson R (1993a) Organic matter sources in the water column and sediments of the Hudson River Estuary: the use of plant pigments as tracers. Estuar Coast Shelf Sci 36:359–376

    CAS  Google Scholar 

  • Bianchi TS, Dibb JE, Findlay S (1993b) Early diagenesis of plant pigments in Hudson River sediments. Estuar Coast Shelf Sci 36:517–527

    CAS  Google Scholar 

  • Bianchi T, Rolff C, Widbom B, Elmgren R (2002) Phytoplankton pigments in Baltic Sea seston and sediments: seasonal variability, fluxes, and transformations. Estuar Coast Shelf Sci 55:369–383

    CAS  Google Scholar 

  • Biddanda B, Ogdahl M, Cotner J (2001) Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnol Oceanogr 46:730–739

    Google Scholar 

  • Bidigare R (1989) Potential effects of UV-B radiation on marine organisms of the Southern Ocean: distributions of phytoplankton and krill during austral spring. Photochem Photobiol 50:469–477

    CAS  Google Scholar 

  • Bidigare R, Morrow J, Kiefer D (1989) Derivative analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea. J Mar Res 47:323–341

    CAS  Google Scholar 

  • Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO 2 /O2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100

    CAS  Google Scholar 

  • Biggs B (1985) Algae: a blooming nuisance in rivers. Soil Water 21:27–31

    Google Scholar 

  • Biggs BJF (1995) The contribution of flood disturbance, catchment geology and land use to the habitat template of periphyton in stream ecosystems. Freshw Biol 33:419–438

    Google Scholar 

  • Biggs BJF (2000) Eutrophication of streams and rivers: dissolved nutrient-chlorophyll relationships for benthic algae. J N Am Benthol Soc 19:17–31

    Google Scholar 

  • Biggs B, Kilroy C, Lowe R (1998a) Periphyton development in three valley segments of a New Zealand grassland river: test of a habitat matrix conceptual model within a catchment. Arch Hydrobiol 143:147–177

    Google Scholar 

  • Biggs B, Stevenson R, Lowe R (1998b) A habitat matrix conceptual model for stream periphyton. Arch Hydrobiol 143:21–56

    Google Scholar 

  • Biggs BJF, Smith RA, Duncan MJ (1999) Velocity and sediment disturbance of periphyton in headwater streams: biomass and metabolism. J N Am Benthol Soc 18:222–241

    Google Scholar 

  • Bjørnsen P, Nielsen T (1991) Decimeter scale heterogeneity in the plankton during a pycnocline bloom of Gyrodinium aureolum. Mar Ecol Prog Ser 73:263–267

    Google Scholar 

  • Blair J, Ayres T (1943) Protection of natural green pigment in canning of peas. Ind Eng Chem 35:85–95

    CAS  Google Scholar 

  • Blanco AC, Nadaoka K, Yamamoto T (2008) Planktonic and benthic microalgal community composition as indicators of terrestrial influence on a fringing reef in Ishigaki Island, Southwest Japan. Mar Environ Res 66:520–535

    CAS  Google Scholar 

  • Blindow I, Hargeby A, Meyercordt J, Schubert H (2006) Primary production in two shallow lakes with contrasting plant form dominance: A paradox of enrichment? Limnol Oceanogr 51:2711–2721

    Google Scholar 

  • Bopp L, Monfray P, Aumont O, Dufresne JL, Le Treut H, Madec G, Terray L, Orr JC (2001) Potential impact of climate change on marine export production. Glob Biogeochem Cy 15:81–100

    CAS  Google Scholar 

  • Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M (2005) Response of diatoms distribution to global warming and potential implications: a global model study. Geophys Res Lett 32:L19606. doi:101029/2005GL023653

    Google Scholar 

  • Borges A, Ruddick K, Schiettecatte LS, Delille B (2008) Net ecosystem production and carbon dioxide fluxes in the Scheldt estuarine plume. BMC Ecol 8:  101186/1472-6785-8-15

    Google Scholar 

  • Box EO (2004) Gross production, respiration and biosphere CO2 fluxes under global warming. Trop Ecol 45:13–30

    Google Scholar 

  • Brainerd KE, Gregg MC (1995) Surface mixed and mixing layer depths. Deep Sea Res Part I 42:1521–1543

    Google Scholar 

  • Breves W, Reuter R, Delling N, Michaelis W (2003) Fluorophores in the Arabian Sea and their relationship to hydrographic conditions. Ocean Dyn 53:73–85

    Google Scholar 

  • Brewin RJW, Sathyendranath S, Hirata T, Lavender SJ, Barciela RM, Hardman-Mountford NJ (2010) A three-component model of phytoplankton size class for the Atlantic Ocean. Ecoll Model 221:1472–1483

    CAS  Google Scholar 

  • Brown SB, Houghton JD, Hendry GAF (1991) Chlorophyll breakdown. In: Scheer H (ed) Chlorophylls. CRC press, Boca Raton, pp 465–489

    Google Scholar 

  • Brunet C, Brylinski J, Frontier S (1992) Productivity, photosynthetic pigments and hydrology in the coastal front of the Eastern English Channel. J Plankton Res 14:1541–1552

    CAS  Google Scholar 

  • Buchanan C, Lacouture RV, Marshall HG, Olson M, Johnson JM (2005) Phytoplankton reference communities for Chesapeake Bay and its tidal tributaries. Estuar Coasts 28:138–159

    CAS  Google Scholar 

  • Buckle K, Edwards R (1970) Chlorophyll, colour and pH changes in HTST processed green pea puree. Int J Food Sci Technol 5:173–186

    CAS  Google Scholar 

  • Budy P, Luecke C, Wurtsbaugh WA, Gross H, Gubala C (1995) Limnology of the Sawtooth Valley lakes with respect to potential growth of juvenile Snake River sockeye salmon. Northwest Sci 69:133–150

    Google Scholar 

  • Burrell JWK, Jackman LM, Weedon BCL (1959) Stereo-chemistry and synthesis of phytol, geraniol and nerol. Proc Chem Soc 1959:263–265

    Google Scholar 

  • Bursche EM (1961) Änderungen im Chlorophyllgehalt und im Zellvolumen bei Planktonalgen, hervorgerufen durch unterschiedliche Lebensbedingungen. Int Rev Ges Hydrobiol 46:610–652

    Google Scholar 

  • Bushaw KL, Zepp RG, Tarr MA, Schulz-Jander D, Bourbonniere RA, Hodson RE, Miller WL, Bronk DA, Moran MA (1996) Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature 381:404–407

    CAS  Google Scholar 

  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57

    CAS  Google Scholar 

  • Calbet A, Atienza D, Henriksen CI, Saiz E, Adey TR (2009) Zooplankton grazing in the Atlantic Ocean: a latitudinal study. Deep Sea Res Part II 56:954–963

    Google Scholar 

  • Calijuri M, Cunha D, Queiroz L, Moccellin J, Miwa A (2008) Nutrients and chlorophyll-a concentrations in tropical rivers of Ribeira do Iguape Basin, SP, Brazil. Acta Limnol Bras 20:131–138

    Google Scholar 

  • Camacho A (1997) Ecología de los microorganismos fotosintéticos en las aguas microaerobias y anóxicas de la Laguna de Arcas. Ph D Thesis, University of Valencia, Valencia, Spain, p 360

    Google Scholar 

  • Camacho A (2006) On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25:453–478

    Google Scholar 

  • Camacho A, Miracle MR, Vicente E (2003) Which factors determine the abundance and distribution of picocyanobacteria in inland waters? A comparison among different types of lakes and ponds. Arch Hydrobiol 157:321–338

    Google Scholar 

  • Canjura FL, Schwartz SJ, Nunes RV (1991) Degradation kinetics of chlorophylls and chlorophyllides. J Food Sci 56:1639–1643

    CAS  Google Scholar 

  • Carpenter SR, Kinne O, Wieser W (2003) Regime shifts in lake ecosystems: pattern and variation. Excellence in ecology series, vol 15. Ecology Institute, Luhe, Germany

    Google Scholar 

  • Carrillo P, Medina-Sánchez JM, Villar-Argaiz M (2002) The interaction of phytoplankton and bacteria in a high mountain lake: importance of the spectral composition of solar radiation. Limnol Oceanogr 47:1294–1306

    Google Scholar 

  • Carstensen J, Conley DJ, Henriksen P (2004) Frequency, composition, and causes of summer phytoplankton blooms in a shallow coastal ecosystem, the Kattegat. Limnol Oceanogr 49:191–201

    CAS  Google Scholar 

  • Castle JW, Rodgers JH Jr (2009) Hypothesis for the role of toxin-producing algae in Phanerozoic mass extinctions based on evidence from the geologic record and modern environments. Environ Geosci 16:1–23

    Google Scholar 

  • Chapin BRK, DeNoyelles F Jr, Graham DW, Smith VH (2004) A deep maximum of green sulphur bacteria (‘Chlorochromatium aggregatum’) in a strongly stratified reservoir. Freshw Biol 49:1337–1354

    CAS  Google Scholar 

  • Chapra SC (1997) Surface water-quality modeling. McGraw-Hill, New York

    Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319

    CAS  Google Scholar 

  • Chen M, Chen B, Harrison P, Liu H (2011) Dynamics of mesozooplankton assemblages in subtropical coastal waters of Hong Kong: a comparative study between a eutrophic estuarine and a mesotrophic coastal site. Cont Shelf Res 31:1075–1086

    Google Scholar 

  • Chessman B (1985) Phytoplankton of the La Trobe River, Victoria. Mar Freshw Res 36:115–122

    Google Scholar 

  • Chetelat J, Pick F, Morin A, Hamilton P (1999) Periphyton biomass and community composition in rivers of different nutrient status. Can J Fish Aquat Sci 56:560–569

    CAS  Google Scholar 

  • Chow-Fraser P, Trew D, Findlay D, Stainton M (1994) A test of hypotheses to explain the sigmoidal relationship between total phosphorus and chlorophyll a concentrations in Canadian lakes. Can J Fish Aquat Sci 51:2052–2065

    Google Scholar 

  • Christ B, Schelbert S, Aubry S, Süssenbacher I, Müller T, Kräutler B, Hörtensteiner S (2012) MES16, a member of the methylesterase protein family, specifically demethylates Fluorescent chlorophyll catabolites during chlorophyll breakdown in arabidopsis. Plant Physiol 158:628–641

    CAS  Google Scholar 

  • Christodoulou S, Marty JC, Miquel JC, Volkman JK, Rontani JF (2009) Use of lipids and their degradation products as biomarkers for carbon cycling in the northwestern Mediterranean Sea. Mar Chem 113:25–40

    CAS  Google Scholar 

  • Christodoulou S, Joux F, Marty JC, Sempéré R, Rontani JF (2010) Comparative study of UV and visible light induced degradation of lipids in non-axenic senescent cells of Emiliania huxleyi. Mar Chem 119:139–152

    CAS  Google Scholar 

  • Clark CD, Hiscock WT, Millero FJ, Hitchcock G, Brand L, Miller WL, Ziolkowski L, Chen RF, Zika RG (2004) CDOM distribution and CO2 production on the Southwest Florida Shelf. Mar Chem 89:145–167

    CAS  Google Scholar 

  • Clarke RH, Connors RE, Schaafsma TJ, Kleibeuker JF, Platenkamp RJ (1976) The triplet state of chlorophylls. J Am Chem Soc 98:3674–3677

    CAS  Google Scholar 

  • Closs G, Katz J, Pennington F, Thomas M, Strain H (1963) Nuclear magnetic resonance spectra and molecular association of chlorophylls a and b, methyl chlorophyllides, pheophytins, and methyl pheophorbides. J Am Chem Soc 85:3809–3821

    CAS  Google Scholar 

  • Codispoti L, Christensen J (1985) Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific Ocean. Mar Chem 16:277–300

    CAS  Google Scholar 

  • Cogdell RJ, Fyfe PK, Barrett SJ, Prince SM, Freer AA, Isaacs NW, McGlynn P, Hunter CN (1996) The purple bacterial photosynthetic unit. Photosynth Res 48:55–63

    CAS  Google Scholar 

  • Cooke SL, Williamson CE, Hargreaves BR, Morris DP (2006) Beneficial and detrimental interactive effects of dissolved organic matter and ultraviolet radiation on zooplankton in a transparent lake. Hydrobiologia 568:15–28

    CAS  Google Scholar 

  • Cooper W, Lean D (1992) Hydrogen peroxide dynamics in marine and fresh water systems. Encyclop Earth Sys Sci 2:527–535

    Google Scholar 

  • Cottrell MT, Kirchman DL (2009) Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol 75:4958–4966

    CAS  Google Scholar 

  • Crabbe P, Djerassi C, Eisenbraun E, Liu S (1959) Optical rotatory dispersion studies XXIX absolute configuration of phytol. Proc Chem Soc 1959:264–265

    Google Scholar 

  • Craig SE, Jones CT, Li WKW, Lazin G, Horne E, Caverhill C, Cullen JJ (2012) Deriving optical metrics of coastal phytoplankton biomass from ocean colour. Remote Sens Environ 119:72–83

    Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Biol 48:355–381

    CAS  Google Scholar 

  • Croot PL, Laan P, Nishioka J, Strass V, Cisewski B, Boye M, Timmermans KR, Bellerby RG, Goldson L, Nightingale P (2005) Spatial and temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment. Mar Chem 95:65–88

    CAS  Google Scholar 

  • Cullen JJ (1982) The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can J Fish Aquat Sci 39:791–803

    CAS  Google Scholar 

  • Cullen JJ, Neale PJ (1997) Effect of UV on short-term photosynthesis of natural phytoplankton. Photochem Photobiol 65:264–266

    Google Scholar 

  • Cuny P, Rontani JF (1999) On the widespread occurrence of 3-methylidene-7, 11, 15-trimethylhexadecan-1, 2-diol in the marine environment: a specific isoprenoid marker of chlorophyll photodegradation. Mar Chem 65:155–165

    CAS  Google Scholar 

  • Cuny P, Romano JC, Beker B, Rontani JF (1999) Comparison of the photodegradation rates of chlorophyll chlorin ring and phytol side chain in phytodetritus: is the phytyldiol versus phytol ratio (CPPI) a new biogeochemical index? J Exp Mar Biol Ecol 237:271–290

    CAS  Google Scholar 

  • Cuny P, Marty JC, Chiavérini J, Vescovali I, Raphel D, Rontani JF (2002) One-year seasonal survey of the chlorophyll photodegradation process in the northwestern Mediterranean Sea. Deep Sea Res Part II 49:1987–2005

    CAS  Google Scholar 

  • Curty C, Engel N (1996) Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochemistry 42:1531–1536

    CAS  Google Scholar 

  • Dasí M, Miracle M (1991) LDistribución vertical y variación estacional del fitoplancton de una laguna carstica meromíctica, la Laguna de la Cruz, (Cuenca, España). Limnetica 7:37–59

    Google Scholar 

  • Dasí M, Miracle M, Camacho A, Soria J, Vicente E (1998) Summer phytoplankton assemblages across trophic gradients in hard-water reservoirs. Hydrobiologia 369:27–43

    Google Scholar 

  • Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725

    CAS  Google Scholar 

  • de Moraes Novo EML, de Farias Barbosa CC, de Freitas RM, Shimabukuro YE, Melack JM, Filho WP (2006) Seasonal changes in chlorophyll distributions in Amazon floodplain lakes derived from MODIS images. Limnology 7:153–161

    CAS  Google Scholar 

  • Dekshenieks MM, Donaghay PL, Sullivan JM, Rines JEB, Osborn TR, Twardowski MS (2001) Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes. Mar Ecol Prog Ser 223:61–71

    Google Scholar 

  • Dellarossa V (1998) Producción primaria anual en sistemas de alta producción biológica. Tesis Escuela de Graduados, Universidad de Concepción, p 149

    Google Scholar 

  • Derenbach J, Astheimer H, Hansen H, Leach H (1979) Vertical microscale distribution of phytoplankton in relation to the thermocline. Mar Ecol Prog Ser 1:187–193

    Google Scholar 

  • Desortová B (1981) Relationship between chlorophyll-α concentration and phytoplankton biomass in several reservoirs in Czechoslovakia. Int Rev Ges Hydrobiol 66:153–169

    Google Scholar 

  • Deuser WG (1987) Variability of hydrography and particle flux: Transient and long-term relationships. Mitt Geol-Palaeont Inst Univ Hamburg 62:179–193

    Google Scholar 

  • Devercelli M, Peruchet E (2008) Trends in chlorophyll-a concentration in urban water bodies within different man-used basins. Ann Limnol Int J Lim 44:75–84

    Google Scholar 

  • Devlin M, Barry J, Mills D, Gowen R, Foden J, Sivyer D, Greenwood N, Pearce D, Tett P (2009) Estimating the diffuse attenuation coefficient from optically active constituents in UK marine waters. Estuar Coast Shelf Sci 82:73–83

    CAS  Google Scholar 

  • Diehl S (2002) Phytoplankton, light, and nutrients in a gradient of mixing depths: theory. Ecology 83:386–398

    Google Scholar 

  • Dietzel L, Bräutigam K, Steiner S, Schüffler K, Lepetit B, Grimm B, Schöttler MA, Pfannschmidt T (2011) Photosystem II Supercomplex Remodeling Serves as an Entry Mechanism for State Transitions in Arabidopsis. Plant Cell 23:2964–2977

    CAS  Google Scholar 

  • Dileep Kumar M, Rajendran A, Somasundar K, Haake B, Jenisch A, Shuo Z, Ittekkot V, Desai B (1990) Dynamics of dissolved organic carbon in the northwestern Indian Ocean. Mar Chem 31:299–316

    Google Scholar 

  • Djurfeldt L (1994) The influence of physical factors on a subsurface chlorophyll maximum in an upwelling area. Estuar Coast Shelf Sci 39:389–400

    Google Scholar 

  • Dodds WK, Jones JR, Welch EB (1998) Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Res 32:1455–1462

    CAS  Google Scholar 

  • Donaghay P, Rines H, Sieburth J (1992) Simultaneous sampling of fine scale biological, chemical, and physical structure in stratified waters. Ergebn Limnol ERLIA 6(36):97–108

    Google Scholar 

  • Dortch Q (1987) The biochemical composition of plankton in a subsurface chlorophyll maximum. Deep Sea Res Part I 34:705–712

    CAS  Google Scholar 

  • Dougherty R, Strain H, Svec WA, Uphaus R, Katz J (1966) Structure of chlorophyll c 1. J Am Chem Soc 88:5037–5038

    CAS  Google Scholar 

  • Downs JN, Lorenzen CJ (1985) Carbon: pheopigment ratios of zooplankton fecal pellets as an index of herbivorous feeding. Limnol Oceanogr 30:1024–1036

    CAS  Google Scholar 

  • Doyon P, Klein B, Ingram R, Legendre L, Tremblay JE, Therriault JC (2000) Influence of wind mixing and upper-layer stratification on phytoplankton biomass in the Gulf of St. Lawrence. Deep Sea Res Part II 47:415–433

    Google Scholar 

  • Drábková M, Admiraal W, Maršálek B (2007) Combined exposure to hydrogen peroxide and light selective effects on cyanobacteria, green algae, and Diatoms. Environ Sci Technol 41:309–314

    Google Scholar 

  • Drazkiewicz M (1994) Chlorophyllase: occurrence, functions, mechanism of action, effects of external and internal factors (review). Photosynthetica 30:321–331

    CAS  Google Scholar 

  • Duan S, Bianchi TS (2006) Seasonal changes in the abundance and composition of plant pigments in particulate organic carbon in the lower Mississippi and Pearl Rivers. Estuar Coasts 29:427–442

    CAS  Google Scholar 

  • Dupouy C, Neveux J, Ouillon S, Frouin R, Murakami H, Hochard S, Dirberg G (2010) Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia. Mar Pollut Bull 61:503–518

    CAS  Google Scholar 

  • Durrant JR, Klug DR, Kwa S, van Grondelle R, Porter G, Dekker JP (1995) A multimer model for P680, the primary electron donor of photosystem II. PNAS 92:4798–4802

    CAS  Google Scholar 

  • Echevin V, Aumont O, Tam J, Pasapera J (2004) The seasonal cycle of surface chlorophyll along the Peruvian coast: comparison between SeaWifs satellite observations and dynamical/biogeochemical coupled model simulations. Gayana (Concepción) 68:325–326

    Google Scholar 

  • Ediger D, Yilmaz A (1996) Characteristics of deep chlorphyll maximum in the Northeastern Mediterranean with respect to environmental conditions. J Mar Sys 9:291–303

    Google Scholar 

  • Ediger D, Soydemir N, Kideys A (2006) Estimation of phytoplankton biomass using HPLC pigment analysis in the southwestern Black Sea. Deep Sea Res Part II 53:1911–1922

    Google Scholar 

  • Fahnenstiel GL, Scavia D (1987) Dynamics of Lake Michigan phytoplankton: the deep chlorophyll layer. J Great Lakes Res 13:285–295

    CAS  Google Scholar 

  • Falkner KK, Steele M, Woodgate RA, Swift JH, Aagaard K, Morison J (2005) Dissolved oxygen extrema in the Arctic Ocean halocline from the North Pole to the Lincoln Sea. Deep Sea Res Part I 52:1138–1154

    Google Scholar 

  • Falkowski PG, Sucher J (1981) Rapid, quantitative separation of chlorophylls and their degradation products by high-performance liquid chromatography. J Chromatogr 213:349–351

    CAS  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor F (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    CAS  Google Scholar 

  • Farjalla VF, Anesio AM, Bertilsson S, Granéli W (2001) Photochemical reactivity of aquatic macrophyte leachates: abiotic transformations and bacterial. Aquat Microb Ecol 24:187–195

    Google Scholar 

  • Fee EJ (1976) The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario: Implications for primary production estimates. Limnol Oceanogr 21:767–783

    Google Scholar 

  • Felip M, Catalan J (2000) The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J Plankton Res 22:91–106

    Google Scholar 

  • Fennel K, Boss E (2003) Subsurface maxima of phytoplankton and chlorophyll: Steady-state solutions from a simple model. Limnol Oceanogr 48:1521–1534

    Google Scholar 

  • Fenton H (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    CAS  Google Scholar 

  • Ficken GE, Johns RB, Linstead RP (1956) Chlorophyll and related compounds. Part IV. The position of the extra hydrogens in chlorophyll. The oxidation of pyrophœophorbide-a. J Chem Soc 2272–2280. doi:10.1039/JR9560002272

  • Fielding P, Seiderer L (1991) A fresh look at kelp bed phytoplankton populations in an upwelling area. Mar Ecol Prog Ser 72:167–177

    Google Scholar 

  • Finlay K, Leavitt P, Wissel B, Prairie Y (2009) Regulation of spatial and temporal variability of carbon flux in six hard-water lakes of the northern Great Plains. Limnol Oceanogr 54:2553–2564

    CAS  Google Scholar 

  • Fischer H, Wenderoth H (1940) Chlorophyll XCIX Optically active hemotricarboxylic imides from chlorophyll. Annalen 545:140–147

    CAS  Google Scholar 

  • Fleming I (1967) Absolute configuration and the structure of chlorophyll. Nature 216:151–152. doi:101038/216151a101030

    CAS  Google Scholar 

  • Folly P, Engel N (1999) Chlorophyll b to chlorophyll a conversion precedes chlorophyll degradation in Hordeum vulgare L. J Biol Chem 274:21811–21816

    Google Scholar 

  • Fookes CJR, Jeffrey S (1989) The structure of chlorophyll c3, a novel marine photosynthetic pigment. J Chem Soc Chem Commun 23:1827–1828

    Google Scholar 

  • Foote CS (1976) Photosensitized oxidation and singlet oxygen: consequences in biological systems. In: Pryor WA (ed) Free Radicals in Biology. Academic Press, New York, pp 85–133

    Google Scholar 

  • Fossey J, Lefort D, Sorba J (1996) Free radicals in organic chemistry, vol 109. Masson, Paris, pp 1–307

    Google Scholar 

  • Foster I, Baban S, Charlesworth S, Jackson R, Wade S, Buckland P, Wagstaff K, Harrison S (1997) Nutrient concentrations and planktonic biomass (chlorophyll a) behaviour in the basin of the River Avon, Warwickshire, UK Freshwater Contamination (Proceedings of Rabat Symposium S4, April–May 1997), IAHS Publ no 243

    Google Scholar 

  • Franks PJS, Jaffe JS (2001) Microscale distributions of phytoplankton: initial results from a two-dimensional imaging fluorometer, OSST. Mar Ecol Prog Ser 220:59–72

    Google Scholar 

  • Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J Phycol 43:485–496

    Google Scholar 

  • Fu P, Mostofa KMG, Wu F, Liu CQ, Li W, Liao H, Wang L, Wang J, Mei Y (2010) Excitation-emission matrix characterization of dissolved organic matter sources in two eutrophic lakes (Southwestern China Plateau). Geochem J 44:99–112

    CAS  Google Scholar 

  • Fujiwara K, Ushiroda T, Takeda K, Kumamoto YI, Tsubota H (1993) Diurnal and seasonal distribution of hydrogen peroxide in seawater of the Seto Inland Sea. Geochem J 27:103–115

    CAS  Google Scholar 

  • Furlong ET, Carpenter R (1988) Pigment preservation and remineralization in oxic coastal marine sediments. Geochim Cosmochim Acta 52:87–99

    CAS  Google Scholar 

  • Gálvez J, Niell F, Lucena J (1988) Description and mechanism of formation of a deep chlorphyll maximum due to Ceratium hirundinella(O. F. Mueller) Bergh. Arch Hydrobiol 112:143–155

    Google Scholar 

  • Gao H, Zepp RG (1998) Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States. Environ Sci Technol 32:2940–2946

    CAS  Google Scholar 

  • Gao X, Olapade OA, Kershner MW, Leff LG (2004) Algal-bacterial co-variation in streams: a cross-stream comparison. Arch Hydrobiol 159:253–261

    Google Scholar 

  • Gao K, Li P, Watanabe T, Walter Helbling E (2008) Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (spirulina) platensis (Cyanophyta). J Phycol 44:777–786

    Google Scholar 

  • Garber JH (1984) Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston. Estuar Coast Shelf Sci 18:685–702

    CAS  Google Scholar 

  • Garcia HE, Boyer TP, Levitus S, Locarnini RA, Antonov J (2005) On the variability of dissolved oxygen and apparent oxygen utilization content for the upper world ocean: 1955 to 1998. Geophys Res Lett 32:L09604. doi:101029/102004GL022286

    Google Scholar 

  • Garrison DL, Sullivan CW, Ackley SF (1986) Sea ice microbial communities in Antarctica. Bioscience 36:243–250

    Google Scholar 

  • Gaulke AK, Wetz MS, Paerl HW (2010) Picophytoplankton: A major contributor to planktonic biomass and primary production in a eutrophic, river-dominated estuary. Estuar Coast Shelf Sci 90:45–54

    CAS  Google Scholar 

  • Gentien P, Lunven M, Lehaītre M, Duvent J (1995) In situ depth profiling of particle sizes. Deep Sea Res Part I 42:1297–1312

    Google Scholar 

  • Ghai R, Martin-Cuadrado AB, Molto AG, Heredia IG, Cabrera R, Martin J, Verdú M, Deschamps P, Moreira D, López-García P (2010) Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J 4:1154–1166

    CAS  Google Scholar 

  • Gibb S, Barlow R, Cummings D, Rees N, Trees C, Holligan P, Suggett D (2000) Surface phytoplankton pigment distributions in the Atlantic Ocean: an assessment of basin scale variability between 50ºN and 50ºS. Prog Oceanogr 45:339–368

    Google Scholar 

  • Ginsburg S, Matile P (1993) Identification of catabolites of chlorophyll-porphyrin in senescent rape cotyledons. Plant Physiol 102:521–527

    CAS  Google Scholar 

  • Gitelson AA, Schalles JF, Hladik CM (2007) Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens Environ 109:464–472

    Google Scholar 

  • Gleitz M, Thomas DN (1993) Variation in phytoplankton standing stock, chemical composition and physiology during sea-ice formation in the southeastern Weddell Sea, Antarctica. J Exp Mar Biol Ecol 173:211–230

    CAS  Google Scholar 

  • Goedheer J (1970) On the pigment system of brown algae. Photosynthetica 4:97–106

    CAS  Google Scholar 

  • Goericke R, Welschmeyer NA (1998) Response of Sargasso Sea phytoplankton biomass, growth rates and primary production to seasonally varying physical forcing. J Plankton Res 20:2223–2249

    Google Scholar 

  • Gold HJ, Weckel K (1958) Degradation of chlorophyll to pheophytin during sterilization of canned green peas by heat. Food Technol 13:281–286

    Google Scholar 

  • Gomes HR, Goes JI, Saino T (2000) Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal. Continent Shelf Res 20:313–330

    Google Scholar 

  • Gong GC, Shiah FK, Liu KK, Wen YH, Liang MH (2000) Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Cont Shelf Res 20:411–436

    Google Scholar 

  • Gonzalez H, Pantoja S, Iriarte J, Bernal P (1989) Winter-spring variability of size-fractionated autotrophic biomass in Concepcion Bay, Chile. J Plankton Res 11:1157–1167

    Google Scholar 

  • Gossauer A, Engel N (1996) Chlorophyll catabolism–structures, mechanisms, conversions. J Photochem Photobiol 32:141–151

    CAS  Google Scholar 

  • Graneli W, Lindell M, Tranvik L (1996) Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol Oceanogr 41:698–706

    CAS  Google Scholar 

  • Granéli W, Lindell M, De Faria BM, de Assis Esteves F (1998) Photoproduction of dissolved inorganic carbon in temperate and tropical lakes–dependence on wavelength band and dissolved organic carbon concentration. Biogeochemistry 43:175–195

    Google Scholar 

  • Green B, Durnford D (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Biol 47:685–714

    CAS  Google Scholar 

  • Grippo M, Fleeger J, Rabalais N, Condrey R, Carman K (2010) Contribution of phytoplankton and benthic microalgae to inner shelf sediments of the north-central Gulf of Mexico. Cont Shelf Res 30:456–466

    Google Scholar 

  • Gross HP, Wurtsbaugh WA, Budy P, Luecke C (1997) Fertilization of an oligotrophic lake with a deep chlorophyll maximum: predicting the effect on primary productivity. Can J Fish Aquat Sci 54:1177–1189

    Google Scholar 

  • Grossman AR, Bhaya D, Apt KE, Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet 29:231–288

    CAS  Google Scholar 

  • Guéguen C, Guo L, Wang D, Tanaka N, Hung C–C (2006) Chemical characteristics and origin of dissolved organic matter in the Yukon River. Biogeochemistry 77:139–155

    Google Scholar 

  • Guildford SJ, Hecky RE (2000) Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnol Oceanogr 45:1213–1223

    CAS  Google Scholar 

  • Gunawan MI, Barringer SA (2000) Green color degradation of blanched broccoli (Brassica oleracea) due to acid and microbial growth. J Food Process Preserv 24:253–263

    Google Scholar 

  • Gupte S, El-Bisi H, Francis F (1964) Kinetics of thermal degradation of chlorophyll in spinach pureea. J Food Sci 29:379–382

    CAS  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. PNAS 104:12942–12947

    CAS  Google Scholar 

  • Häder DP, Sinha RP (2005) Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact. Mutation Res 571:221–233

    Google Scholar 

  • Hamilton DP, O’Brien KR, Burford MA, Brookes JD, McBride CG (2010) Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquat Sci 72:295–307

    CAS  Google Scholar 

  • Hanamachi Y, Hama T, Yanai T (2008) Decomposition process of organic matter derived from freshwater phytoplankton. Limnology 9:57–69

    CAS  Google Scholar 

  • Harris G (1986) Phytoplankton ecology: structure, function and fluctuation. The Concept of Limiting Nutrients Capman and Hall, London, pp 137–165

    Google Scholar 

  • Harrison JW, Smith REH (2011) Deep chlorophyll maxima and UVR acclimation by epilimnetic phytoplankton. Freshwater Biol 56:980–992

    CAS  Google Scholar 

  • Hart DR, Stone L, Berman T (2000) Seasonal dynamics of the Lake Kinneret food web: the importance of the microbial loop. Limnol Oceanogr 45:350–361

    CAS  Google Scholar 

  • Harvey HW (1934) Amount of phytoplankton population. J Mar Biol Assoc UK 19:761–773

    Google Scholar 

  • Harvey H (1939) Substances controlling the growth of a diatom. J mar biol Ass UK 23:499–520

    CAS  Google Scholar 

  • Hatcher KJ (1987) Selecting an appropriate method for estimating the sediment oxygen demand rate. In: Lichtenberg JJ, Winter JA, Weber CI, Fradkin L (eds) Chemical and Biological Characterization of Sludges, Sediments, Dredge Spoils, and Drilling Muds, ASTM STP 976. American Society for Testing and Materials, Philadelphia, pp 438–449

    Google Scholar 

  • Hauxwell J, Cebrián J, Valiela I (2003) Eelgrass Zostera marina loss in temperate estuaries: relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Mar Ecol Prog Ser 247:59–73

    CAS  Google Scholar 

  • Hayakawa K, Sugiyama Y (2008) Spatial and seasonal variations in attenuation of solar ultraviolet radiation in Lake Biwa, Japan. J Photochem Photobiol 90:121–133

    CAS  Google Scholar 

  • Hayakawa K, Timbers GE (1977) Influence of heat treatment on the quality of vegetables: changes in visual green color. J Food Sci 42:778–781

    Google Scholar 

  • Hayward T, Cayan D, Franks P, Lynn R, Mantyla A, McGowan J, Smith P, Schwing F, Venrick E (1995) The state of the California Current in 1994–1995: a period of transition. Calif Coop Oceanic Fish Invest Rep 35:19–40

    Google Scholar 

  • He B, Dai M, Zhai W, Wang L, Wang K, Chen J, Lin J, Han A, Xu Y (2010) Distribution, degradation and dynamics of dissolved organic carbon and its major compound classes in the Pearl River estuary, China. Mar Chem 119:52–64

    CAS  Google Scholar 

  • Head E, Horne E (1993) Pigment transformation and vertical flux in an area of convergence in the North Atlantic. Deep Sea Res Part II 40:329–346

    Google Scholar 

  • Heaton JW, Lencki RW, Alejandro G (1996) Kinetic model for chlorophyll degradation in green tissue. J Agric Food Chem 44:399–402

    CAS  Google Scholar 

  • Heiskary S, Markus H (2003) Establishing relationships among instream nutrient concentrations, phytoplankton and periphyton abundance and composition, fish and macroinvertebrate indices, and biochemical oxygen demand in Minnesota USA rivers. Minnesota Pollution Control Agency, Environmental Outcomes Division, St Paul

    Google Scholar 

  • Hendry GAF, Houghton JD, Brown SB (1987) Tansley review No. 11. The degradation of chlorophyll-a biological enigma. New Phytol 107:255–302

    CAS  Google Scholar 

  • Henrichs SM, Doyle AP (1986) Decomposition of 14C-labeled organic substances in marine sediments. Limnol Oceanogr 31:765–778

    CAS  Google Scholar 

  • Hense I, Beckmann A (2008) Revisiting subsurface chlorophyll and phytoplankton distributions. Deep Sea Res Part I 55:1193–1199

    Google Scholar 

  • Hewes C, Reiss C, Holm-Hansen O (2009) A quantitative analysis of sources for summertime phytoplankton variability over 18 years in the South Shetland Islands (Antarctica) region. Deep Sea Res Part I 56:1230–1241

    CAS  Google Scholar 

  • Hillman J, Glidewell S, Deighton N (1994) The senescence syndrome in plants: an overview of phytogerontology. Proc R Soc Edinb B 102:447–458

    Google Scholar 

  • Hinder B, Schellenberg M, Rodoni S, Ginsburg S, Vogt E, Martinoia E, Matile P, Hörtensteiner S (1996) How plants dispose of chlorophyll catabolites. J Biol Chem 271:27233–27236

    CAS  Google Scholar 

  • Hobson LA, Lorenzen CJ (1972) Relationship of chlorophyll maxima to density structure in the Atlantic Ocean and Gulf of Mexico. Deep-Sea Res 19:297–306

    Google Scholar 

  • Hodges BA, Rudnick DL (2004) Simple models of steady deep maxima in chlorophyll and biomass. Deep Sea Res Part I 51:999–1015

    CAS  Google Scholar 

  • Hoepffner N, Sathyendranath S (1991) Effect of pigment composition on absorption properties of phytoplankton. Mar Ecol Prog Ser 73:11–23

    CAS  Google Scholar 

  • Holm-Hansen O, Hewes CD (2004) Deep chlorophyll-a maxima (DCMs) in Antarctic waters. Polar Biol 27:699–710

    Google Scholar 

  • Holm-Hansen O, Kahru M, Hewes C, Kawaguchi S, Kameda T, Sushin V, Krasovski I, Priddle J, Korb R, Hewitt R (2004) Temporal and spatial distribution of chlorophyll-a in surface waters of the Scotia Sea as determined by both shipboard measurements and satellite data. Deep Sea Res Part II 51:1323–1331

    CAS  Google Scholar 

  • Hong AP, Bahnemann DW, Hoffmann MR (1987) Cobalt (II) tetrasulfophthalocyanine on titanium dioxide: a new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions. J Phys Chem 91:2109–2117

    CAS  Google Scholar 

  • Hopkinson BM, Barbeau KA (2008) Interactive influences of iron and light limitation on phytoplankton at subsurface chlorophyll maxima in the eastern North Pacific. Limnol Oceanogr 53:1303–1318

    CAS  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Google Scholar 

  • Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988

    Google Scholar 

  • Hörtensteiner S, Vicentini F, Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129:237–246

    Google Scholar 

  • Hörtensteiner S, Wüthrich KL, Matile P, Ongania KH, Kräutler B (1998) The key step in chlorophyll breakdown in higher plants. J Biol Chem 273:15335–15339

    Google Scholar 

  • Huang L, Jian W, Song X, Huang X, Liu S, Qian P, Yin K, Wu M (2004) Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Mar Pollut Bull 49:588–596

    CAS  Google Scholar 

  • Huang B, Hong H, Ke L, Cao Z (2005) Size-fractionated phytoplankton biomass and productivity in the Zhujiang River Estuary in China. Acta Oceanol Sin 27:180–186

    CAS  Google Scholar 

  • Huisman J, Weissing FJ (1995) Competition for nutrients and light in a mixed water column: a theoretical analysis. Am Nat 146:536–564

    Google Scholar 

  • Huisman J, van Oostveen P, Weissing FJ (1999) Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. Am Nat 154:46–68

    Google Scholar 

  • Huisman J, Thi NNP, Karl DM, Sommeijer B (2006) Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439:322–325

    CAS  Google Scholar 

  • Hung CC, Wong GTF, Liu KK, Shiah FK, Gong GC (2000) The effects of light and nitrate levels on the relationship between nitrate reductase activity and 15NO3-uptake: Field observations in the East China Sea. Limnol Oceanogr 45:836–848

    CAS  Google Scholar 

  • Huszar VLM, Caraco NF, Roland F, Cole J (2006) Nutrient chlorophyll relationships in tropical-subtropical lakes: do temperate models fit? Biogeochemistry 79:239–250

    CAS  Google Scholar 

  • Iriarte JL, González HE (2004) Phytoplankton size structure during and after the 1997/98 El Nino in a coastal upwelling area of the northern Humboldt current system. Mar Ecol Prog Ser 269:83–90

    Google Scholar 

  • Iriarte J, González H, Liu K, Rivas C, Valenzuela C (2007) Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (415–43ºS). Estuar Coast Shelf Sci 74:471–480

    Google Scholar 

  • Isada T, Hattori-Saito A, Saito H, Ikeda T, Suzuki K (2010) Primary productivity and its bio-optical modeling in the Oyashio region, NW Pacific during the spring bloom 2007. Deep Sea Res Part II 57:1653–1664

    CAS  Google Scholar 

  • Ito H, Ohtsuka T, Tanaka A (1996) Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. J Biol Chem 271:1475–1479

    CAS  Google Scholar 

  • Jacob-Wilk D, Holland D, Goldschmidt EE, Riov J, Eyal Y (1999) Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development. Plant J 20:653–661

    CAS  Google Scholar 

  • Jagannathan B, Golbeck JH (2009) Photosynthesis: microbial. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Elsevier, London, pp 325–341

    Google Scholar 

  • James RT, Havens K, Zhu G, Qin B (2009) Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, PR China and Lake Okeechobee, USA). Hydrobiologia 627:211–231

    CAS  Google Scholar 

  • Janave MT (1997) Enzymic degradation of chlorophyll in Cavendish bananas: in vitro evidence for two independent degradative pathways. Plant Physiol Biochem 35:837–846

    CAS  Google Scholar 

  • Jeffrey S, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:1–194

    Google Scholar 

  • Jeffrey S, Wright SW (1987) A new spectrally distinct component in preparations of chlorophyll c from the micro-alga Emiliania huxleyi (Prymnesiophycease). Biochim Biophys Acta 894:180–188

    CAS  Google Scholar 

  • Jeffrey SW, Mantoura RFC, Wright SW (Eds) (1997) Phytoplankton Pigments in Oceanography: guidelines to modern methods, UNESCO Publishing

    Google Scholar 

  • Jeffrey S, Wright S, Zapata M (1999) Recent advances in HPLC pigment analysis of phytoplankton. Mar Freshw Res 50:879–896

    CAS  Google Scholar 

  • Jiang H, Qiu B (2011) Inhibition of photosynthesis by UV-B exposure and its repair in the bloom-forming cyanobacterium Microcystis aeruginosa. J Appl Phycol 23:691–696

    CAS  Google Scholar 

  • Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Rev Microbiol 8:593–599

    CAS  Google Scholar 

  • Johannessen SC, Peña MA, Quenneville ML (2007) Photochemical production of carbon dioxide during a coastal phytoplankton bloom. Estuar Coast Shelf Sci 73:236–242

    Google Scholar 

  • Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495–512

    Google Scholar 

  • Johnson ZI, Shyam R, Ritchie AE, Mioni C, Lance VP, Murray JW, Zinser ER (2010) The effect of iron-and light-limitation on phytoplankton communities of deep chlorophyll maxima of the western Pacific Ocean. J Mar Res 68:283–308

    CAS  Google Scholar 

  • Johnson-Flanagan AM, Spencer MS (1996) Chlorophyllase and peroxidase activity during degreening of maturing canola (Brassica napus) and mustard (Brassica juncea) seed. Physiol Plant 97:353–359

    CAS  Google Scholar 

  • Jørgensen NOG, Tranvik L, Edling H, Granéli W, Lindell M (1998) Effects of sunlight on occurrence and bacterial turnover of specific carbon and nitrogen compounds in lake water. FEMS Microbiol Ecol 25:217–227

    Google Scholar 

  • Kahlert M (2002) Horizontal variation of biomass and C: N: P ratios of benthic algae in lakes. Hydrobiologia 489:171–177

    CAS  Google Scholar 

  • Karentz D, Bosch I, Mitchell D (2004) Limited effects of Antarctic ozone depletion on sea urchin development. Mar Biol 145:277–292

    CAS  Google Scholar 

  • Kariola T, Brader G, Li J, Palva ET (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17:282–294

    CAS  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    CAS  Google Scholar 

  • Kasprzak P, Padisák J, Koschel R, Krienitz L, Gervais F (2008) Chlorophyll a concentration across a trophic gradient of lakes: an estimator of phytoplankton biomass? Limnologica 38:327–338

    Google Scholar 

  • Katz JJ, Bowman MK, Michalski TJ, Worcester DL (1991) Chlorophyll aggregation: chlorophylly water micelles as models for in vivo long-wavelength chlorophyll. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 211–235

    Google Scholar 

  • Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229

    Google Scholar 

  • Keely BJ, Maxwell JR (1991) Structural characterization of the major chlorins in a recent sediment. Org Geochem 17:663–669

    CAS  Google Scholar 

  • Keishi S (1979) Preferential degradation of chlorophyll b in ethylene-treated fruits of ‘Satsuma’mandarin. Sci Hortic 11:253–256

    Google Scholar 

  • Kiefer DA, Holm-Hansen O, Goldman CR, Richards R, Berman T (1972) Phytoplankton in Lake Tahoe: deep-living populations. Limnol Oceanogr 17:418–422

    Google Scholar 

  • Kiefer D, Olson R, Holm-Hansen O (1976) Another look at the nitrite and chlorophyll maxima in the central North Pacific. Deep-Sea Res 23:1199–1208

    CAS  Google Scholar 

  • Kim D, Choi SH, Kim KH, Shim JH, Yoo S, Kim CH (2009) Spatial and temporal variations in nutrient and chlorophyll-a concentrations in the northern East China Sea surrounding Cheju Island. Cont Shelf Res 29:1426–1436

    Google Scholar 

  • Kimball JW (1979) Biology, 4th edn. Addison-Wesley, Reading

    Google Scholar 

  • Kimor B, Berman T, Schneller A (1987) Phytoplankton assemblages in the deep chlorophyll maximum layers off the Mediterranean coast of Israel. J Plankton Res 9:433–443

    Google Scholar 

  • Kinkade C, Marra J, Dickey T, Weller R (2001) An annual cycle of phytoplankton biomass in the Arabian Sea, 1994–1995, as determined by moored optical sensors. Deep Sea Res Part II 48:1285–1301

    Google Scholar 

  • Kirchman DL, Suzuki Y, Garside C, Ducklow HW (1991) High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature 352:612–614

    CAS  Google Scholar 

  • Kirchman DL, Rich JH, Barber RT (1995) Biomass and biomass production of heterotrophic bacteria along 140°W in the equatorial Pacific: effect of temperature on the microbial loop. Deep Sea Res Part II 42:603–619

    Google Scholar 

  • Kiss G, Dévai G, Tóthmérész B, Szabó A (2006) Multivariate analysis of long-term water quality changes of shallow Lake Balaton. Verh Int Verein Theoret Angew Limnol 29:2051–2055

    CAS  Google Scholar 

  • Klausmeier CA, Litchman E (2001) Algal games: the vertical distribution of phytoplankton in poorly mixed water columns. Limnol Oceanogr 46:1998–2007

    Google Scholar 

  • Klug JL (2002) Positive and negative effects of allochthonous dissolved organic matter and inorganic nutrients on phytoplankton growth. Can J Fish Aquat Sci 59:85–95

    Google Scholar 

  • Knox JP, Dodge AD (1985) Singlet oxygen and plants. Phytochemistry 24:889–896

    CAS  Google Scholar 

  • Koca N, Karadeniz F, Burdurlu HS (2007) Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem 100:609–615

    CAS  Google Scholar 

  • Komissarov G (1994) Photosynthesis: a new look. Sci Russia 5:52–55

    Google Scholar 

  • Komissarov G (1995) Photosynthesis as a physicochemical process. Chem Phys Rep 14:1723–1732

    Google Scholar 

  • Komissarov G (2003) Photosynthesis: the physical-chemical approach. J Adv Chem Phys 2:28–61

    Google Scholar 

  • Koné V, Machu E, Penven P, Andersen V, Garcon V, Fréon P, Demarcq H (2005) Modeling the primary and secondary productions of the southern Benguela upwelling system: A comparative study through two biogeochemical models. Glob Biogeochem Cy 19:GB4021, doi:101029/102004GB002427

    Google Scholar 

  • Kratsch H, Wise R (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    CAS  Google Scholar 

  • Kräutler B (2003) Chlorophyll breakdown and chlorophyll catabolites. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 13. Elsevier Science, Oxford, pp 183–209

    Google Scholar 

  • Kräutler B, Hörtensteiner S (2006) Chlorophyll catabolites and the biochemistry of chlorophyll breakdown. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 237–260

    Google Scholar 

  • Kräutler B, Matile P (1999) Solving the riddle of chlorophyll breakdown. Acc Chem Res 32:35–43

    Google Scholar 

  • Kräutler B, Jaun B, Matile P, Bortlik K, Schellenberg M (1991) On the enigma of chlorophyll degradation: the constitution of a secoporphinoid catabolite. Angew Chem Int Ed Engl 30:1315–1318

    Google Scholar 

  • Kräutler B, Jaun B, Amrein W, Bortlik K, Schellenberg M, Matile P (1992) Breakdown of chlorophyll: constitution of a secoporphinoid chlorophyll catabolite isolated from senescent barley leaves. Plant Physiol Biochem 30:333–346

    Google Scholar 

  • Kräutler B, Mühlecker W, Anderl M, Gerlach B (1997) Breakdown of Chlorophyll: Partial synthesis of a putative intermediary catabolite. Preliminary communication. Helvet Chim Acta 80:1355–1362

    Google Scholar 

  • Kräutler B, Banala S, Moser S, Vergeiner C, Müller T, Lütz C, Holzinger A (2010) A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily and indicates a split path of chlorophyll breakdown. FEBS Lett 584:4215–4221

    Google Scholar 

  • Kujawinski EB, Longnecker K, Blough NV, Vecchio RD, Finlay L, Kitner JB, Giovannoni SJ (2009) Identification of possible source markers in marine dissolved organic matter using ultrahigh resolution mass spectrometry. Geochim Cosmochim Acta 73:4384–4399

    CAS  Google Scholar 

  • Kwan WP, Voelker BM (2002) Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ Sci Technol 36:1467–1476

    CAS  Google Scholar 

  • Kwan WP, Voelker BM (2003) Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 37:1150–1158

    CAS  Google Scholar 

  • Laane R, Gieskes W, Kraay G, Eversdijk A (1985) Oxygen consumption from natural waters by photo-oxidizing processes. Neth J Sea Res 19:125–128

    Google Scholar 

  • Lajollo F, Tannenbaum S, Labuza T (1971) Reaction at limited water concentration. 2. Chlorophyll degradation. J Food Sci 36:850–853

    CAS  Google Scholar 

  • Langston WJ, Chesman B, Burt G, Hawkins S, Readman J, Worsfold P (2003) characterisation of the South West European Marine sites. Summary report. Occas Publ Mar Biol Assoc UK, 111

    Google Scholar 

  • Laurion I, Ventura M, Catalan J, Psenner R, Sommaruga R (2000) Attenuation of ultraviolet radiation in mountain lakes: Factors controlling the among-and within-lake variability. Limnol Oceanogr 45:1274–1288

    Google Scholar 

  • Laurion I, Lami A, Sommaruga R (2002) Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages. Aquat Microb Ecol 26:283–294

    Google Scholar 

  • Law CS, Abraham ER, Watson AJ, Liddicoat MI (2003) Vertical eddy diffusion and nutrient supply to the surface mixed layer of the Antarctic Circumpolar Current. J Geophys Res108, 3272, 14, doi:10.1029/2002JC001604

  • Leavitt P, Carpenter S (1990) Regulation of pigment sedimentation by photo-oxidation and herbivore grazing. Can J Fish Aquat Sci 47:1166–1176

    Google Scholar 

  • Lemaire E, Abril G, De Wit R, Etcheber H (2002) Distribution of phytoplankton pigments in nine European estuaries and implications for an estuarine typology. Biogeochemistry 59:5–23

    CAS  Google Scholar 

  • Lesser MP, Barry TM (2003) Survivorship, development, and DNA damage in echinoderm embryos and larvae exposed to ultraviolet radiation (290–400 nm). J Exp Mar Biol Ecol 292:75–91

    CAS  Google Scholar 

  • Lesser MP, Farrell JH, Walker CW (2001) Oxidative stress, DNA damage and p53 expression in the larvae of Atlantic cod (Gadus morhua) exposed to ultraviolet (290–400 nm) radiation. J Exp Biol 204:157–164

    CAS  Google Scholar 

  • Lesser MP, Lamare MD, Barker MF (2004) Transmission of ultraviolet radiation through the Antarctic annual sea ice and its biological effects on sea urchin embryos. Limnol Oceanogr 49:1957–1963

    Google Scholar 

  • Letelier RM, Karl DM, Abbott MR, Bidigare RR (2004) Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific subtropical Gyre. Limnol Oceanogr 49:508–519

    CAS  Google Scholar 

  • Leu E, Falk-Petersen S, Hessen DO (2007) Ultraviolet radiation negatively affects growth but not food quality of arctic diatoms. Limnol Oceanogr 52:787–797

    CAS  Google Scholar 

  • Lewis J, William M, Mccutchan J, James H (2010) Ecological responses to nutrients in streams and rivers of the Colorado mountains and foothills. Freshw Biol 55:1973–1983

    Google Scholar 

  • Li W, Harrison W (2001) Chlorophyll, bacteria and picophytoplankton in ecological provinces of the North Atlantic. Deep Sea Res Part II 48:2271–2293

    Google Scholar 

  • Li HB, Lv RH, Ding T, Lin Y (2007) Impact of tidal front on the distribution of bacterioplankton in the southern Yellow Sea, China. J Mar Sys 67:263–271

    Google Scholar 

  • Li G, Gao K, Gao G (2011) Differential impacts of solar UV radiation on photosynthetic carbon fixation from the coastal to offshore surface waters in the South China Sea. Photochem Photobiol 87:329–334

    CAS  Google Scholar 

  • Liang YZ, Brereton RG, Kvalheim OM, Rahmani A (1993) Use of chemometric factor analysis for chromatographic integration: application to diode-array high-performance liquid chromatography of mixtures of chlorophyll a degradation products. Analyst 118:779–790

    CAS  Google Scholar 

  • Lister KN, Lamare MD, Burritt DJ (2010) Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation. J Exp Biol 213:1967–1975

    CAS  Google Scholar 

  • Liu Z, Dreybrodt W, Wang H (2010) A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth Sci Rev 99:162–172

    CAS  Google Scholar 

  • Liu X, Lu X, Chen Y (2011) The effects of temperature and nutrient ratios on microcystis blooms in Lake Taihu, China: an 11-year investigation. Harmful Algae 10:337–343

    Google Scholar 

  • Lizotte MP (2001) The contributions of sea ice algae to Antarctic marine primary production. Am Zool 41:57–73

    Google Scholar 

  • Lizotte MP, Robinson DH, Sullivan CW (1998) Algal pigment signatures in Antarctic sea ice. In: Lizotte MP, Arrigo KR (eds) Antarctic sea ice: biological processes, interactions and variability. Antarctic Res Ser 73:93–106

    Google Scholar 

  • Lobanov AV, Rubtsova NA, Vedeneeva YuA, Komissarov GG (2008) Photocatalytic activity of chlorophyll in hydrogen peroxide generation in water. Doklady Chem 421:190–193

    CAS  Google Scholar 

  • Lohman K, Jones JR (1999) Nutrient-sestonic chlorophyll relationships in northern Ozark streams. Can J Fish Aquat Sci 56:124–130

    Google Scholar 

  • Lohman K, Jones JR, Perkins BD (1992) Effects of nutrient enrichment and flood frequency on periphyton biomass in northern Ozark streams. Can J Fish Aquat Sci 49:1198–1205

    Google Scholar 

  • Lohrenz SE, Cai WJ, Chen F, Chen X, Tuel M (2010) Seasonal variability in air-sea fluxes of CO2 in a river-influenced coastal margin. J Geophys Res 115:C10034

    Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271

    Google Scholar 

  • Longing SD, Haggard BE (2010) Distributions of median nutrient and chlorophyll concentrations across the Red River basin, USA. J Environ Qual 39:1966–1974

    CAS  Google Scholar 

  • Lu Z, Gan J, Dai M, Cheung AYY (2010) The influence of coastal upwelling and a river plume on the subsurface chlorophyll maximum over the shelf of the northeastern South China Sea. J Mar Sys 82:35–46

    Google Scholar 

  • Lund-Hansen LC, De Amezua Ayala PC, Reglero AF (2006) Bio-optical properties and development of a sub-surface chlorophyll maxima (SCM) in southwest Kattegat, Baltic Sea. Estuar Coast Shelf Sci 68:372–378

    Google Scholar 

  • Lv J, Wu H, Chen M (2011) Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica 41:48–56

    CAS  Google Scholar 

  • Ma X, Green SA (2004) Photochemical transformation of dissolved organic carbon in Lake Superior–an in situ experiment. J Great Lakes Res 30:97–112

    CAS  Google Scholar 

  • Mackey D, Parslow J, Higgins H, Griffiths F, O’Sullivan J (1995) Plankton productivity and biomass in the western equatorial Pacific: biological and physical controls. Deep Sea Res Part II 42:499–533

    CAS  Google Scholar 

  • Maeda Y, Kurata H, Adachi M, Shimokawa K (1998) Chlorophyll catabolism in ethylene-treated Citrus unshiu fruits. J Jpn Soc Hort Sci 67:497–502

    CAS  Google Scholar 

  • Magnuson J, Webster K, Assel R, Bowser C, Dillon P, Eaton J, Evans H, Fee E, Hall R, Mortsch L (1997) Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield Region. Hydrol Process 11:825–871

    Google Scholar 

  • Malkin SY, Guildford SJ, Hecky RE (2008) Modeling the growth response of Cladophora in a Laurentian Great Lake to the exotic invader Dreissena and to lake warming. Limnol Oceanogr 53:1111–1124

    Google Scholar 

  • Mallin MA (1994) Phytoplankton ecology of North Carolina estuaries. Estuar Coasts 17:561–574

    Google Scholar 

  • Mangos TJ, Berger RG (1997) Determination of major chlorophyll degradation products. Zeitschrift für Lebensmitteluntersuchung und-Forschung A 204:345–350

    CAS  Google Scholar 

  • Mantoura R, Llewellyn C (1983) The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal Chim Acta 151:297–314

    CAS  Google Scholar 

  • Maranón E, Cermeno P, Fernández E, Rodríguez J, Zabala L (2004) Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnol Oceanogr 49:1652–1666

    Google Scholar 

  • Marañón E, Holligan PM, Varela M, Mouriño B, Bale AJ (2000) Basin-scale variability of phytoplankton biomass, production and growth in the Atlantic Ocean. Deep Sea Res Part I 47:825–857

    Google Scholar 

  • Marchand D, Rontani JF (2001) Characterisation of photo-oxidation and autoxidation products of phytoplanktonic monounsaturated fatty acids in marine particulate matter and recent sediments. Org Geochem 32:287–304

    CAS  Google Scholar 

  • Marchand D, Marty JC, Miquel JC, Rontani JF (2005) Lipids and their oxidation products as biomarkers for carbon cycling in the northwestern Mediterranean Sea: results from a sediment trap study. Mar Chem 95:129–147

    CAS  Google Scholar 

  • Markager S, Vincent WF (2000) Spectral light attenuation and the absorption of UV and blue light in natural waters. Limnol Oceanogr 45:642–650

    CAS  Google Scholar 

  • Marshall CT, Peters RH (1989) General patterns in the seasonal development of chlorophyll a for temperate lakes. Limnol Oceanogr 34:856–867

    CAS  Google Scholar 

  • Marshall JA, Hovenden M, Oda T, Hallegraeff GM (2002) Photosynthesis does influence superoxide production in the ichthyotoxic alga Chattonella marina (Raphidophyceae). J Plankton Res 24:1231–1236

    CAS  Google Scholar 

  • Martin J, Tremblay JÉ, Gagnon J, Tremblay G, Lapoussière A, Jose C, Poulin M, Gosselin M, Gratton Y, Michel C (2010) Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar Ecol Prog Ser 412:69–84

    CAS  Google Scholar 

  • Matile P (1997) The vacuole and cell senescence. Adv Bot Res 25:87–112

    CAS  Google Scholar 

  • Matile P, Ginsburg S, Schellenberg M, Thomas H (1988) Catabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells. PNAS 85:9529–9532

    CAS  Google Scholar 

  • Matile P, Schellenberg M, Peisker C (1992) Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 187:230–235

    CAS  Google Scholar 

  • Matile P, Hortensteiner S, Thomas H, Krautler B (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 112:1403–1409

    CAS  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Biol 50:67–95

    CAS  Google Scholar 

  • Matondkar P, Nair K, Ansari Z (2005) Biological characteristics of Central Indian Basin waters during the southern summer. Mar Geores Geotechnol 23:299–314

    CAS  Google Scholar 

  • Maurin N, Amblard C, Bourdier G (1997) Phytoplanktonic excretion and bacterial reassimilation in an oligomesotrophic lake: molecular weight fractionation. J Plankton Res 19:1045–1068

    CAS  Google Scholar 

  • McCallister SL, del Giorgio PA (2008) Direct measurement of the δ13C signature of carbon respired by bacteria in lakes: Linkages to potential carbon sources, ecosystem baseline metabolism, and CO2 fluxes. Limnol Oceanogr 53:1204–1216

    CAS  Google Scholar 

  • Mellard JP, Yoshiyama K, Litchman E, Klausmeier CA (2011) The vertical distribution of phytoplankton in stratified water columns. J Theor Biol 269:16–30

    Google Scholar 

  • Menzel DW (1964) The distribution of dissolved organic carbon in the western Indian ocean. Deep-Sea Res 11:757–765

    Google Scholar 

  • Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VYU (1999) Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plant 106:135–141

    CAS  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    CAS  Google Scholar 

  • Micinski E, Ball LA, Zafiriou OC (1993) Photochemical oxygen activation: Superoxide radical detection and production rates in the eastern Caribbean. J Geophys Res 98:2299–2306

    CAS  Google Scholar 

  • Millán-Núñez M, Alvarez-Borrego S, Trees C (1996) Relationship between deep chalrophyll maximum and surface chlorophyll concentration in the California current system. CalCOFl Rep 37:241–250

    Google Scholar 

  • Miller WL, Moran MA (1997) Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol Oceanogr 42:1317–1324

    CAS  Google Scholar 

  • Miller WL, Zepp RG (1995) Photochemical production of dissolved inorganic carbon from terrestrial organic matter: Significance to the oceanic organic. Geophys Res Lett 22:417–420

    CAS  Google Scholar 

  • Millie DF, Paerl HW, Hurley JP (1993) Microalgal pigment assessments using high-performance liquid chromatography: a synopsis of organismal and ecological applications. Can J Fish Aquat Sci 50:2513–2527

    CAS  Google Scholar 

  • Millie D, Kirkpatrick G, Vinyard B (1995) Relating photosynthetic pigments and in vivo optical density spectra to irradiance for the Florida red-tide dinoflagellate Gymnodinium breve. Mar Ecol Prog Ser 120:65–75

    CAS  Google Scholar 

  • Millie DF, Schofield OM, Kirkpatrick GJ, Johnsen G, Tester PA, Vinyard BT (1997) Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide dinoflagellate, Gymnodinium breve. Limnol Oceanogr 42:1240–1251

    CAS  Google Scholar 

  • Millie DF, Schofield OME, Kirkpatrick GJ, Johnsen G, Evens TJ (2002) Using absorbance and fluorescence spectra to discriminate microalgae. Eur J Phycol 37:313–322

    Google Scholar 

  • Miltner RJ (2010) A method and rationale for deriving nutrient criteria for small rivers and streams in Ohio. Environ Manage 45:842–855

    Google Scholar 

  • Mineeva N, Abramova N (2009) Phytoplankton pigments as ecological state indices of the Cheboksary Reservoir. Water Resour 36:560–567

    CAS  Google Scholar 

  • Mineeva N, Litvinov A, Stepanova I, Kochetkova MY (2008) Chlorophyll content and factors affecting its spatial distribution in the Middle Volga reservoirs. Inland Water Biol 1:64–72

    Google Scholar 

  • Minguez-Mosquera MI, Garrido-Fernandez J, Gandul-Rojas B (1989) Pigment changes in olives during fermentation and brine storage. J Agric Food Chem 37:8–11

    CAS  Google Scholar 

  • Ming-Yi S, Lee C, Aller RC (1993) Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments. Geochim Cosmochim Acta 57:147–157

    Google Scholar 

  • Miracle MR, Armengol-Diaz J, Dasi MJ (1993) Extreme meromixis determines strong differential planktonic vertical distributions. Internationale Verh Internat Verein Limnol 25:705–710

    Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N (1996) Chlorophyll d as a major pigment. Nature 383:402

    CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemot H, Chihara M, Miyach S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281

    CAS  Google Scholar 

  • Mock T, Gradinger R (1999) Determination of Arctic ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26

    CAS  Google Scholar 

  • Moffett JW, Zafiriou OC (1990) An Investigation of hydrogen peroxide chemistry in surface waters of Vineyard Sound with H 182 O2 and 18O2. Limnol Oceanogr 35:1221–1229

    CAS  Google Scholar 

  • Moll R, Stoermer E (1982) Hypothesis relating trophic status and subsurface chlorophyll maxima of lakes. Arch Hydrobiol 94:425–440

    Google Scholar 

  • Moll RA, Brache MZ, Peterson TP (1984) Phytoplankton dynamics within the subsurface chlorophyll maximum of Lake Michigan. J Plankton Res 6:751–766

    CAS  Google Scholar 

  • Molot LA, Hudson JJ, Dillon PJ, Miller SA (2005) Effect of pH on photo-oxidation of dissolved organic carbon by hydroxyl radicals in a coloured, softwater stream. Aquat Sci 67:189–195

    CAS  Google Scholar 

  • Monbet Y (1992) Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal estuaries. Estuar Coasts 15:563–571

    CAS  Google Scholar 

  • Morales CE, Blanco JL, Braun M, Reyes H, Silva N (1996) Chlorophyll-a distribution and associated oceanographic conditions in the upwelling region off northern Chile during the winter and spring 1993. Deep Sea Res Part I 43:267–289

    CAS  Google Scholar 

  • Moreno CM (2012) Hydrogen peroxide production driven by UV-B in planktonic microorganisms: a photocatalytic factor in sea warming and ice melting in regions with ozone depletion? Biogeochemistry 107:1–8

    CAS  Google Scholar 

  • Morgan AM, Royer TV, David MB, Gentry LE (2006) Relationships among nutrients, chlorophyll-, and dissolved oxygen in agricultural streams in Illinois. J Environ Qual 35:1110–1117

    CAS  Google Scholar 

  • Morris DP, Hargreaves BR (1997) The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnol Oceanogr 42:239–249

    CAS  Google Scholar 

  • Moser S, Müller T, Ebert MO, Jockusch S, Turro NJ, Kräutler B (2008) Blue luminescence of ripening bananas. Angew Chem Int Ed 47:8954–8957

    CAS  Google Scholar 

  • Moser S, Müller T, Oberhuber M, Kräutler B (2009a) Chlorophyll catabolites–chemical and structural footprints of a fascinating biological phenomenon. Eur J Org Chem 2009:21–31

    Google Scholar 

  • Moser S, Müller T, Holzinger A, Lütz C, Jockusch S, Turro NJ, Kräutler B (2009b) Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death. PNAS 106:15538–15543

    CAS  Google Scholar 

  • Mostofa KMGLC, Wu FC, Fu PQ, Ying WL, Yuan J (2009) Overview of key biogeochemical functions in lake ecosystem: Impacts of organic matter pollution and global warming. In: Proceedings of the 13th world lake conference Wuhan, China, 1–5 Nov 2009, Keynote speech, pp 59–60

    Google Scholar 

  • Mostofa KMG, Sakugawa H (2009) Spatial and temporal variations and factors controlling the concentrations of hydrogen peroxide and organic peroxides in rivers. Environ Chem 6:524–534

    CAS  Google Scholar 

  • Mostofa KMG, Yoshioka T, Konohira E, Tanoue E, Hayakawa K, Takahashi M (2005) Three-dimensional fluorescence as a tool for investigating the dynamics of dissolved organic matter in the Lake Biwa watershed. Limnology 6:101–115

    CAS  Google Scholar 

  • Mostofa K, Wu FC, Yoshioka T, Sakugawa H, Tanoue E (2009) Dissolved organic matter in the aquatic environments. In: Wu FC, Xing B (eds) Natural organic matter and its significance in the environment. Science Press, Beijing, pp 3–66

    Google Scholar 

  • Mostofa K, Yoshioka, T, Hayakawa, K, Tanoue, E, Konohira, E, Takahashi, M Distribution and dynamics of chlorophyll a and pheopigments in Lake Biwa: Implications to production of dissolved organic matter (unpublished data)

    Google Scholar 

  • Mostofa KMG, Wu FC, Liu CQ, Ying WL Characterization of fluorescent dissolved organic matter originated under photoinduced and microbial assimilations of lake algae using EEM-PARAFAC (unpublished data)

    Google Scholar 

  • Motilva M-J (2008) Chlorophylls—from functionality in food to health relevance, 5th Pigments in Food congress- for quality and health, University of Helsinki

    Google Scholar 

  • Moum JN, Caldwell DR, Paulson CA (1989) Mixing in the equatorial surface layer and thermocline. J Geophys Res 94(C2):2005–2021

    Google Scholar 

  • Mühlecker W, Kräutler B (1996) Breakdown of chlorophyll: constituent of nonfluorescing chlorophyll-catabolites from senescent cotyledons of the dicot rape. Plant Physiol Biochem 34:61–75

    Google Scholar 

  • Mühlecker W, Ongania KH, Kräutler B, Matile P, Hörtensteiner S (1997) Tracking down chlorophyll breakdown in plants: elucidation of the constitution of a “fluorescent” chlorophyll catabolite. Angew Chem Int Ed Engl 36:401–404

    Google Scholar 

  • Mühlecker W, Kräutler B, Moser D, Matile P, Hörtensteiner S (2000) Breakdown of chlorophyll: a fluorescent chlorophyll catabolite from sweet pepper (Capsicum annuum). Helvet Chim Acta 83:278–286

    Google Scholar 

  • Müller T, Ulrich M, Ongania KH, Kräutler B (2007) Colorless tetrapyrrolic chlorophyll catabolites found in ripening fruit are effective antioxidants. Angew Chem Int Ed 46:8699–8702

    Google Scholar 

  • Murray DL, Kohorn BD (1991) Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCPII and have stacked thylakoids. Plant Mol Biol 16:71–79

    CAS  Google Scholar 

  • Nelson JR (1993) Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton. J Mar Res 51:155–179

    CAS  Google Scholar 

  • Nelson JR, Wakeham SG (1989) A phytol-substituted chlorophyll-c from Emiliania huxleyi (prymnesiophyceae). J Phycol 25:761–766

    CAS  Google Scholar 

  • Nelson N, Siegel D, Michaels A (1998) Seasonal dynamics of colored dissolved material in the Sargasso Sea. Deep Sea Res Part I 45:931–957

    CAS  Google Scholar 

  • Nelson NB, Carlson CA, Steinberg DK (2004) Production of chromophoric dissolved organic matter by Sargasso Sea microbes. Mar Chem 89:273–287

    CAS  Google Scholar 

  • Nichols MM, Biggs RB (1985) Estuaries. In: Davis RA Jr (ed) Coastal sedimentary environments, 2nd edn. Springer, New York, pp 77–186

    Google Scholar 

  • Nieto-Cid M, Alvarez-Salgado X, Pérez F (2006) Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnol Oceanogr 51:1391–1400

    CAS  Google Scholar 

  • Norrbin F, Eilertsen HC, Degerlund M (2009) Vertical distribution of primary producers and zooplankton grazers during different phases of the Arctic spring bloom. Deep Sea Res Part II 56:1945–1958

    Google Scholar 

  • Nusch E, Palme G (1975) Biologische methoden für die praxis der gewässeruntersuchung. GWF-Wasser/Abwasser 116:562–565

    Google Scholar 

  • Oberhuber M, Kräutler B (2002) Breakdown of chlorophyll: electrochemical bilin reduction provides synthetic access to fluorescent chlorophyll catabolites. Chem Biochem 3:104–107

    CAS  Google Scholar 

  • Oberhuber M, Berghold J, Breuker K, Hörtensteiner S, Kraütler B (2003) Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. PNAS 100:6910–6915

    CAS  Google Scholar 

  • Oberhuber M, Berghold J, Kräutler B (2008) Chlorophyll breakdown by a biomimetic route. Angew Chem Int Ed 47:3057–3061

    CAS  Google Scholar 

  • Obernosterer I, Benner R (2004) Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol Oceanogr 49:117–124

    CAS  Google Scholar 

  • Oda T, Nakamura A, Okamoto T, Ishimatsu A, Muramatsu T (1998) Lectin-induced enhancement of superoxide anion production by red tide phytoplankton. Mar Biol 131:383–390

    CAS  Google Scholar 

  • Odate T, Furuya K (1998) Well-developed subsurface chlorophyll maximum near Komahashi No. 2 Seamount in the summer of 1991. Deep Sea Res Part I 45:1595–1607

    CAS  Google Scholar 

  • Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292:917–920

    CAS  Google Scholar 

  • Okada K, Inoue Y, Satoh K, Katoh S (1992) Effects of light on degradation of chlorophyll and proteins during senescence of detached rice leaves. Plant Cell Physiol 33:1183–1191

    CAS  Google Scholar 

  • Olson MB, Strom SL (2002) Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep Sea Res Part II 49:5969–5990

    CAS  Google Scholar 

  • Omar A, Olsen A, Johannessen T, Hoppema M, Thomas H, Borges A (2010) Spatiotemporal variations of fCO2 in the North Sea. Ocean Sci 6:77–89

    CAS  Google Scholar 

  • Ondrusek ME, Bidigare RR, Sweet ST, Defreitas DA, Brooks JM (1991) Distribution of phytoplankton pigments in the North Pacific Ocean in relation to physical and optical variability. Deep Sea Res Part I 38:243–266

    CAS  Google Scholar 

  • O’Reilly CM, Alin SR, Plisnier PD, Cohen AS, McKee BA (2003) Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424:766–768

    Google Scholar 

  • Owens TG, Falkowskit PG (1982) Enzymatic degradation of chlorophyll a by marine phytoplankton in vitro. Phytochemistry 21:979–984

    CAS  Google Scholar 

  • Owens TG, Gallagher JC, Alberte RS (1987) Photosynthetic light-harvesting function of violoxanthin in Nannochloropsis spp (Eustigmagtophyceae). J Phycol 23:79–85

    CAS  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37

    CAS  Google Scholar 

  • Palenik B, Morel F (1988) Dark production of H2O2 in the Sargasso Sea. Limnol Oceanogr 33:1606–1611

    CAS  Google Scholar 

  • Palenik B, Zafiriou O, Morel F (1987) Hydrogen peroxide production by a marine phytoplankter. Limnol Oceanogr 32:1365–1369

    CAS  Google Scholar 

  • Palmer-Felgate EJ, Jarvie HP, Williams RJ, Mortimer RJG, Loewenthal M, Neal C (2008) Phosphorus dynamics and productivity in a sewage-impacted lowland chalk stream. J Hydrol 351:87–97

    CAS  Google Scholar 

  • Palmisano A, Sullivan C (1983) Sea ice microbial communities (SIMCO). Polar Biol 2:171–177

    Google Scholar 

  • Palmisano A, Kottmeier S, Moe RL, Sullivan C (1985) Sea ice microbial communities. IV. The effect of light perturbation on microalgae at the ice-seawater interface in McMurdo Sound, Antarctica. Mar Ecol Prog Ser 21:37–45

    Google Scholar 

  • Pan BZ, Wang HJ, Liang XM, Wang HZ (2009) Factors influencing chlorophyll a concentration in the Yangtze-connected lakes. Fres Environ Bull 18:1894–1900

    CAS  Google Scholar 

  • Parab SG, Prabhu Matondkar S, Gomes HR, Goes J (2006) Monsoon driven changes in phytoplankton populations in the eastern Arabian Sea as revealed by microscopy and HPLC pigment analysis. Continent Shelf Res 26:2538–2558

    Google Scholar 

  • Park S, Chandra S, Müller-Navarra DC, Goldman CR (2004) Diel and vertical variability of seston food quality and quantity in a small subalpine oligomesotrophic lake. J Plankton Res 26:1489–1498

    CAS  Google Scholar 

  • Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, Lee SK, Jeong SW, Seo HS, Koh HJ (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    CAS  Google Scholar 

  • Parlanti E, Wörz K, Geoffroy L, Lamotte M (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 31:1765–1781

    CAS  Google Scholar 

  • Parsons TR, Strickland JDH (1963) Discussion of spectrophotometric determination of marine-plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. J Mar Res 21:155–163

    CAS  Google Scholar 

  • Pattanaik B, Roleda MY, Schumann R, Karsten U (2008) Isolate-specific effects of ultraviolet radiation on photosynthesis, growth and mycosporine-like amino acids in the microbial mat-forming cyanobacterium Microcoleus chthonoplastes. Planta 227:907–916

    CAS  Google Scholar 

  • Paulsen H, Finkenzeller B, Kühlein N (1993) Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem 215:809–816

    CAS  Google Scholar 

  • Payri CE, Maritorena S, Bizeau C, Rodière M (2001) Photoacclimation in the tropical coralline alga Hydrolithon onkodes (Rhodophyta, Corallinaceae) from a French Polynesian reef. J Phycol 37:223–234

    CAS  Google Scholar 

  • Pearlstein RM (1996) Coupling of exciton motion in the core antenna and primary charge separation in the reaction center. Photosynth Res 48:75–82

    CAS  Google Scholar 

  • Pedros-Alio C, Gasol JM, Guerrero R (1987) On the ecology of a Cryptomonas phaseolus population forming a metalimnetic bloom in Lake Cisó, Spain: Annual distribution and loss factors. Limnol Oceanogr 32:285–298

    CAS  Google Scholar 

  • Pennock JR (1985) Chlorophyll distributions in the Delaware estuary: regulation by light-limitation. Estuar Coast Shelf Sci 21:711–725

    CAS  Google Scholar 

  • Pérez GL, Queimaliños CP, Modenutti BE (2002) Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. J Plankton Res 24:591–599

    Google Scholar 

  • Pérez V, Fernández E, Marañón E, Morán XAG, Zubkov MV (2006) Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Res Part I 53:1616–1634

    Google Scholar 

  • Pérez G, Queimalinos C, Balseiro E, Modenutti B (2007) Phytoplankton absorption spectra along the water column in deep North Patagonian Andean lakes (Argentina). Limnologica 37:3–16

    Google Scholar 

  • Perovich D (1993) A theoretical model of ultraviolet light transmission through Antarctic sea ice. J Geophys Res 98(22579–22522):22587

    Google Scholar 

  • Petasne RG, Zika RG (1987) Fate of superoxide in coastal sea water. Nature 325:516–518

    CAS  Google Scholar 

  • Petasne RG, Zika RG (1997) Hydrogen peroxide lifetimes in south Florida coastal and offshore waters. Mar Chem 56:215–225

    CAS  Google Scholar 

  • Pick F, Lean D, Nalewajko C (1984) Nutrient status of metalimnetic phytoplankton peaks. Limnol Oceanogr 29:960–971

    CAS  Google Scholar 

  • Pietta P, Rava A, Biondi P (1981) High-performance liquid chromatography of nifedipine, its metabolites and photochemical degradation products. J Chromatogr 210:516–521

    CAS  Google Scholar 

  • Pizarro G, Iriarte JL, Montecino V, Blanco JL, Guzman L (2000) Distribución de la biomasa fitoplancto′nica y productividad primaria máxima de fiordos y canals australes (47–50º S) en octubre 1996. Cienc Tecnol Mar 23:25–48

    Google Scholar 

  • Planas D, Agusti S, Duarte CM, Granata TC, Merino M (1999) Nitrate uptake and diffusive nitrate supply in the Central Atlantic. Limnol Oceanogr 49:116–126

    Google Scholar 

  • Polle JEW, Benemann JR, Tanaka A, Melis A (2000) Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source. Planta 211:335–344

    CAS  Google Scholar 

  • Premkumar J, Ramaraj R (1999) Photoreduction of dioxygen to hydrogen peroxide at porphyrins and phthalocyanines adsorbed Nafion membrane. J Mol Catal A 142:153–162

    CAS  Google Scholar 

  • Prezelin BB (1981) Light reactions in photosynthesis. Can Bull Fish Aquat Sci 210:1–43

    Google Scholar 

  • Pruzinská A, Tanner G, Aubry S, Anders I, Moser S, Müller T, Ongania KH, Kräutler B, Youn JY, Liljegren SJ (2005) Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139:52–63

    Google Scholar 

  • Qiu D, Huang L, Zhang J, Lin S (2010) Phytoplankton dynamics in and near the highly eutrophic Pearl River Estuary, South China Sea. Cont Shelf Res 30:177–186

    Google Scholar 

  • Rae R, Howard-Williams C, Hawes I, Schwarz AM, Vincent WF (2001) Penetration of solar ultraviolet radiation into New Zealand lakes: influence of dissolved organic carbon and catchment vegetation. Limnology 2:79–89

    CAS  Google Scholar 

  • Rath J, Adhikary SP (2007) Response of the estuarine cyanobacterium Lyngbya aestuarii to UV-B radiation. J Appl Phycol 19:529–536

    CAS  Google Scholar 

  • Renger T, Marcus R (2002) Photophysical properties of PS-2 reaction centers and a discrepancy in exciton relaxation times. J Phys Chem B 106:1809–1819

    CAS  Google Scholar 

  • Reul A, Rodríguez V, Jiménez-Gómez F, Blanco J, Bautista B, Sarhan T, Guerrero F, Ruíz J, Garcia-Lafuente J (2005) Variability in the spatio-temporal distribution and size-structure of phytoplankton across an upwelling area in the NW-Alboran Sea (W-Mediterranean). Cont Shelf Res 25:589–608

    Google Scholar 

  • Richards FA, Thompson TG (1952) The estimation and characterization of plankton populations by pigment analysis. II. A spectrophotometric method for the estimation of plankton pigments. J Mar Res 11:156–172

    CAS  Google Scholar 

  • Riley GA, Stommel HM, Bumpus DF (1949) Quantitative ecology of the plankton of the western North Atlantic. Bull Bingham Oceanogr Coll 12:1–169

    Google Scholar 

  • Rines J, Donaghay P, Dekshenieks M, Sullivan J, Twardowski M (2002) Thin layers and camouflage: hidden Pseudo-nitzschia spp. (Bacillariophyceae) populations in a fjord in the San Juan Islands, Washington, USA. Mar Ecol Prog Ser 225:123–137

    Google Scholar 

  • Rochelle-Newall E, Fisher T (2002) Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton. Mar Chem 77:7–21

    CAS  Google Scholar 

  • Rodoni S, Muhlecker W, Anderl M, Krautler B, Moser D, Thomas H, Matile P, Hortensteiner S (1997) Chlorophyll breakdown in senescent chloroplasts (cleavage of pheophorbide a in two enzymic steps). Plant Physiol 115:669–676

    CAS  Google Scholar 

  • Rojo C, Miracle MR (1987) Poblaciones fitoplanctónicas de la Laguna de la Cruz (Cuenca), una laguna cárstica meromíctica. Act VI Simp Nac Bot Crip 119–135

    Google Scholar 

  • Rolff C (2000) Seasonal variation in delta δ15C and δ15N of size-fractionated plankton at a coastal station in the northern Baltic proper. Mar Ecol Prog Ser 203:47–65

    CAS  Google Scholar 

  • Rontani JF (2001) Visible light-dependent degradation of lipidic phytoplanktonic components during senescence: a review. Phytochemistry 58:187–202

    CAS  Google Scholar 

  • Rontani JF (2008) Photooxidative and autoxidative degradation of lipid components during the senescence of phototrophic organisms. In: Matsumoto T (ed) Phytochemistry research progress. Nova Science Publishers, pp 115–144

    Google Scholar 

  • Rontani JF, Marchand D (2000) Photoproducts of phytoplanktonic sterols: a potential source of hydroperoxides in marine sediments? Org Geochem 31:169–180

    CAS  Google Scholar 

  • Rontani JF, Volkman JK (2003) Phytol degradation products as biogeochemical tracers in aquatic environments. Org Geochem 34:1–35

    CAS  Google Scholar 

  • Rontani J, Grossi V, Faure R, Aubert C (1994) “Bound” 3-methylidene-7, 11, 15-trimethylhexadecan-1, 2-diol: a new isoprenoid marker for the photodegradation of chlorophyll-a in seawater. Org Geochem 21:135–142

    CAS  Google Scholar 

  • Rontani JF, Beker B, Raphel D, Baillet G (1995) Photodegradation of chlorophyll phytyl chain in dead phytoplanktonic cells. J Photochem Photobiol 85:137–142

    CAS  Google Scholar 

  • Rontani JF, Cuny P, Grossi V (1998) Identification of a pool of lipid photoproducts in senescent phytoplanktonic cells. Org Geochem 29:1215–1225

    CAS  Google Scholar 

  • Rontani JF, Perrote S, Cuny P (2000) Can a high chlorophyllase activity bias the use of the phytyldiol versus phytol ratio (CPPI) for the monitoring of chlorophyll photooxidation in seawater? Org Geochem 31:91–99

    CAS  Google Scholar 

  • Rontani JF, Rabourdin A, Marchand D, Aubert C (2003) Photochemical oxidation and autoxidation of chlorophyll phytyl side chain in senescent phytoplanktonic cells: potential sources of several acyclic isoprenoid compounds in the marine environment. Lipids 38:241–254

    CAS  Google Scholar 

  • Rontani JF, Zabeti N, Wakeham S (2011) Degradation of particulate organic matter in the equatorial Pacific Ocean: biotic or abiotic? Limnol Oceanogr 56:333–349

    CAS  Google Scholar 

  • Rowan KS (1989) Photosynthetic pigments of algae. Cambridge University Press, New York

    Google Scholar 

  • Roy R, Pratihary A, Mangesh G, Naqvi S (2006) Spatial variation of phytoplankton pigments along the southwest coast of India. Estuar Coast Shelf Sci 69:189–195

    Google Scholar 

  • Royer TV, David MB, Gentry LE, Mitchell CA, Starks KM, Heatherly T, Whiles MR (2008) Assessment of chlorophyll-as a criterion for establishing nutrient standards in the streams and rivers of Illinois. J Environ Qual 37:437–447

    CAS  Google Scholar 

  • Rüdiger W (2003) The last step of chlorophyll synthesis. The last step of chlorophyll synthesis In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, Elsevier Science, Amsterdam, pp 71–108

    Google Scholar 

  • Ryabov AB, Rudolf L, Blasius B (2010) Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer. J Theor Biol 263:120–133

    Google Scholar 

  • Sabater S, Armengol J, Comas E, Sabater F, Urrizalqui I, Urrutia I (2000) Algal biomass in a disturbed Atlantic river: water quality relationships and environmental implications. Sci Total Environ 263:185–195

    CAS  Google Scholar 

  • Sakshaug E, Holm-Hansen O (1986) Photoadaptation in Antarctic phytopfankton: variations in growth rate, chemical composition and P versus I curves. J Plankton Res 8:459–473

    Google Scholar 

  • Sandu C, Iacob R, Nicolescu N (2003) Chlorophyll-a determination-a reliable method for phytoplankton biomass assessment. Acta Botanica Hungarica 45:389–397

    CAS  Google Scholar 

  • Sanger JE, Gorham E (1970) The diversity of pigments in lake sediments and its ecological significance. Limnol Oceanogr 15:59–69

    CAS  Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249

    CAS  Google Scholar 

  • Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst A, Kleypas J, Matear R, Mikolajewicz U, Monfray P (2004) Response of ocean ecosystems to climate warming. Glob Biogeochem Cy 18:3001–3023

    Google Scholar 

  • Sarthou G, Jeandel C, Brisset L, Amouroux D, Besson T, Donard OFX (1997) Fe and H2O2 distributions in the upper water column in the Indian sector of the Southern Ocean. Earth Planet Sci Lett 147:83–92

    Google Scholar 

  • Sasaki H, Miyamura T, Saitoh S, Ishizaka J (2005) Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan. Estuar Coast Shelf Sci 64:447–458

    Google Scholar 

  • Sasaoka K, Saitoh S, Asanuma I, Imai K, Honda M, Nojiri Y, Saino T (2002) Temporal and spatial variability of chlorophyll-a in the western subarctic Pacific determined from satellite and ship observations from 1997 to 1999. Deep Sea Res Part II 49:5557–5576

    CAS  Google Scholar 

  • Sathyendranath S, Cota G, Stuart V, Maass H, Platt T (2001) Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches. Int J Remote Sens 22:249–273

    Google Scholar 

  • Satoh S, Ikeuchi M, Mimuro M, Tanaka A (2001) Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in photosystem I through flexibility of the proteins. J Biol Chem 276:4293–4297

    CAS  Google Scholar 

  • Satoh Y, Katano T, Satoh T, Mitamura O, Anbutsu K, Nakano S, Ueno H, Kihira M, Drucker V, Tanaka Y (2006) Nutrient limitation of the primary production of phytoplankton in Lake Baikal. Limnology 7:225–229

    CAS  Google Scholar 

  • Sawatzky CL, Wurtsbaugh WA, Luecke C (2006) The spatial and temporal dynamics of deep chlorophyll layers in high-mountain lakes: effects of nutrients, grazing and herbivore nutrient recycling as growth determinants. J Plankton Res 28:65–86

    CAS  Google Scholar 

  • Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767–785

    CAS  Google Scholar 

  • Scheumann V, Schoch S, Rüdiger W (1999) Chlorophyll b reduction during senescence of barley seedlings. Planta 209:364–370

    CAS  Google Scholar 

  • Schindler DW (1997) Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrol Process 11:1043–1067

    Google Scholar 

  • Schmid H, Bauer F, Stich HB (1998) Determination of algal biomass with HPLC pigment analysis from lakes of different trophic state in comparison to microscopically measured biomass. J Plankton Res 20:1651–1661

    CAS  Google Scholar 

  • Schmittner A (2005) Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 434:628–633

    CAS  Google Scholar 

  • Schmittner A, Galbraith ED, Hostetler SW, Pedersen TF, Zhang R (2007) Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction. Paleoceanography 22:PA3207

    Google Scholar 

  • Schubel J (1971) Tidal variation of the size distribution of suspended sediment at a station in the Chesapeake Bay turbidity maximum. Neth J Sea Res 5:252–266

    Google Scholar 

  • Schulte-Elte KH, Muller BL, Pamingle H (1979) Photooxygenation of 3, 3-dialkylsubstituted allyl alcohols. Occurrence of syn preference in the ene addition of 1O2 at E/Z-isomeric allyl alcohols. Helvet Chim Acta 62:816–829

    Google Scholar 

  • Schwartz S, Lorenzo T (1991) Chlorophyll stability during continuous aseptic processing and storage. J Food Sci 56:1059–1062

    CAS  Google Scholar 

  • Schwartz S, von Elbe J (1983) Kinetics of chlorophyll degradation to pyropheophytin in vegetables. J Food Sci 48:1303–1306

    CAS  Google Scholar 

  • Scully NM, Cooper WJ, Tranvik LJ (2003a) Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiol Ecol 46:353–357

    CAS  Google Scholar 

  • Scully NM, Tranvik LJ, Cooper WJ (2003b) Photochemical effects on the interaction of enzymes and dissolved organic matter in natural waters. Limnol Oceanogr 48:1818–1824

    CAS  Google Scholar 

  • Scurlock J, Cramer W, Olson R, Parton W, Prince S (1999) Terrestrial NPP: towards a consistent data set for global model evaluation. Ecol Appl 9:913–919

    Google Scholar 

  • Senesi N (1990) Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals: part II. The fluorescence spectroscopy approach. Anal Chim Acta 232:77–106

    CAS  Google Scholar 

  • Seppälä J, Ylöstalo P, Kaitala S, Hällfors S, Raateoja M, Maunula P (2007) Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuar Coast Shelf Sci 73:489–500

    Google Scholar 

  • Shank GC, Zepp RG, Whitehead RF, Moran MA (2005) Variations in the spectral properties of freshwater and estuarine CDOM caused by partitioning onto river and estuarine sediments. Estuar Coast Shelf Sci 65:289–301

    CAS  Google Scholar 

  • Shioi Y, Tatsumi Y, Shimokawa K (1991) Enzymatic degradation of chlorophyll in Chenopodium album. Plant Cell Physiol 32:87–93

    CAS  Google Scholar 

  • Shlgren G (1983) Comparison of methods for estimation of phytoplankton carbon. Arch Hydrobiol 98:489–508

    Google Scholar 

  • Shuman FR, Lorenzen CJ (1975) Quantitative degradation of chlorophyll by a marine herbivore. Limnol Oceanogr 20:580–586

    CAS  Google Scholar 

  • Sigareva L, Pyrina I (2006) Plant pigments as indicators of water transformation in the upper Volga Chain of reservoirs. Water Resour 33:436–445

    CAS  Google Scholar 

  • Silsbe G, Hecky R, Guildford S, Mugidde R (2006) Variability of chlorophyll a and photosynthetic parameters in a nutrient-saturated tropical great lake. Limnol Oceanogr 51:2052–2063

    CAS  Google Scholar 

  • Sinha RP, Häder DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    CAS  Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448

    CAS  Google Scholar 

  • Smith C, Alberte R (1994) Characterization of in vivo absorption features of chlorophyte, phaeophyte and rhodophyte algal species. Mar Biol 118:511–521

    Google Scholar 

  • Smith RC, Prezelin B, Baker K, Bidigare R, Boucher N, Coley T, Karentz D, MacIntyre S, Matlick H, Menzies D (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    CAS  Google Scholar 

  • Soma Y, Imaizumt T, Yagi K, Kasuga S (1993) Estimation of algal succession in lake water using HPLC analysis of pigments. Can J Fish Aqual Sci 50:1142–1146

    CAS  Google Scholar 

  • Sommaruga R, Augustin G (2006) Seasonality in UV transparency of an alpine lake is associated to changes in phytoplankton biomass. Aquat Sci 68:129–141

    Google Scholar 

  • Spies A (1987) Growth rates of Antarctic marine phytoplankton in the Weddell Sea. Mar Ecol Prog Ser 41:267–274

    Google Scholar 

  • Steele JH (1964) A study of production in the Gulf of Mexico. J Mar Res 22:211222

    Google Scholar 

  • Steele J, Yentsch C (1960) The vertical distribution of chlorophyll. J Mar Biol Assoc UK 39:217–226

    CAS  Google Scholar 

  • Steemann-Nielsen E (1962) On the maximum quantity of plankton chlorophyll per surface unit of a lake or the sea. Int Rev Ges Hydrobiol 47:333–338

    Google Scholar 

  • Steet JA, Tong CH (1996) Quantification of color change resulting from pheophytinization and nonenzymatic browning reactions in thermally processed green peas. J Agric Food Chem 44:1531–1537

    CAS  Google Scholar 

  • Steinhart G, Gross H, Budy P, Luecke C, Wurtsbaugh W (1994) Limnological investigations and hydroacoustic surveys of Sawtooth Valley Lakes. In: Tuescher D, Taki D, Wurtsbaugh WA, Luecke C, Budy P, Gross HP, Steinhart G (eds) Snake River sockeye salmon habitat and limnological researchannual report 1993, Publ No DOE/BP-22548-2 US Department of Energy. Bonneville Power Administration, Portland, Oreg, pp 30–61

    Google Scholar 

  • Stephens MP, Kadko DC, Smith CR, Latasa M (1997) Chlorophyll-a and pheopigments as tracers of labile organic carbon at the central equatorial Pacific seafloor. Geochim Cosmochim Acta 61:4605–4619

    CAS  Google Scholar 

  • Stets EG, Striegl RG, Aiken GR, Rosenberry DO, Winter TC (2009) Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J Geophys Res 114:G01008. doi:101029/102008JG000783

    Google Scholar 

  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    CAS  Google Scholar 

  • Straškrábová V, Izmest’yeva L, Maksimova E, Fietz S, Nedoma J, Borovec J, Kobanova G, Shchetinina E, Pislegina E (2005) Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin) during late winter. Glob Planet Change 46:57–73

    Google Scholar 

  • Striebel M, Spörl G, Stibor H (2008) Light-induced changes of plankton growth and stoichiometry: experiments with natural phytoplankton communities. Limnol Oceanogr 53:513–522

    Google Scholar 

  • Stross RG, Stottlemyer JR (1965) Primary production in the Patuxent River. Chesapeake Sci 6:125–140

    Google Scholar 

  • Sugiyama Y, Anegawa A, Kumagai T, Harita Y, Hori T, Sugiyama M (2004) Distribution of dissolved organic carbon in lakes of different trophic types. Limnology 5:165–176

    CAS  Google Scholar 

  • Sun MY, Lee C, Aller RC (1993) Anoxic and oxic degradation of14C-labeled chloropigments and a 14C-labeled diatom in long island sound sediments. Limnol Oceanogr 38:1438–1451

    CAS  Google Scholar 

  • Sun MY, Cai WJ, Joye SB, Ding H, Dai J, Hollibaugh JT (2002) Degradation of algal lipids in microcosm sediments with different mixing regimes. Org Geochem 33:445–459

    CAS  Google Scholar 

  • Suzuki Y, Shioi Y (1999) Detection of chlorophyll breakdown products in the senescent leaves of higher plants. Plant Cell Physiol 40:909–915

    CAS  Google Scholar 

  • Sweeney J, Martin M (1961) Stability of chlorophyll in vegetables as affected by pH. Food Technol 15:263–266

    CAS  Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res Part II 49:1601–1622

    CAS  Google Scholar 

  • Takamiya K, Tsuchiya T, Ohta H (2000) Degradation pathway (s) of chlorophyll: what has gene cloning revealed? Trends Plant Sci 5:426–431

    CAS  Google Scholar 

  • Talling J (1993) Comparative seasonal changes, and inter-annual variability and stability, in a 26-year record of total phytoplankton biomass in four English lake basins. Hydrobiologia 268:65–98

    Google Scholar 

  • Tanaka A, Tanaka R (2006) Chlorophyll metabolism. Curr Opin Plant Biol 9:248–255

    CAS  Google Scholar 

  • Telfer A, He WZ, Barber J (1990) Spectral resolution of more than one chlorophyll electron donor in the isolated Photosystem II reaction centre complex. Biochim Biophys Acta 1017:143–151

    CAS  Google Scholar 

  • Terao T, Katoh S (1989) Synthesis and breakdown of the apoproteins of light-harvesting chlorophyll a/b proteins in chlorophyll b-deficient mutants of rice. Plant Cell Physiol 30:571–580

    CAS  Google Scholar 

  • Thornber JP, Highkin HR (1974) Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b. Eur J Biochem 41:109–116

    CAS  Google Scholar 

  • Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, Kamjunke N (2003) Mixotrophs combine resource use to outcompete specialists: implications for aquatic food webs. PNAS 100:12776–12781

    CAS  Google Scholar 

  • Tranvik LJ (1993) Microbial transformation of labile dissolved organic matter into humic-like matter in seawater. FEMS Microbiol Ecol 12:177–183

    CAS  Google Scholar 

  • Trebitsh T, Goldschmidt EE, Riov J (1993) Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in citrus fruit peel. PNAS 90:9441–9445

    CAS  Google Scholar 

  • Treibs A (1936) Chlorophyll and hemin derivatives in organic materials. Angew Chem 49:682–686

    CAS  Google Scholar 

  • Tremblay JE, Michel C, Hobson KA, Gosselin M, Price NM (2006) Bloom dynamics in early opening waters of the Arctic Ocean. Limnol Oceanogr 51:900–912

    CAS  Google Scholar 

  • Trodahl H, Buckley R (1989) Ultraviolet levels under sea ice during the Antarctic spring. Science 245:194–195

    CAS  Google Scholar 

  • Trüper HG (1987) Phototrophic bacteria (an incoherent group of prokaryotes). A taxonomic versus phylogenetic survey. Microbiologia 3:71–89

    Google Scholar 

  • Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. PNAS 96:15362–15367

    CAS  Google Scholar 

  • van Nieuwenhuyse EE, Jones JR (1996) Phosphorus-chlorophyll relationship in temperate streams and its variation with stream catchment area. Can J Fish Aquat Sci 53:99–105

    Google Scholar 

  • Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A, Kaplan A (2002) Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 12:1767–1772

    CAS  Google Scholar 

  • Varela R, Cruzado A, Tintoré J (1994) A simulation analysis of various biological and physical factors influencing the deep-chlorophyll maximum structure in oligotrophic areas. J Mar Sys 5:143–157

    Google Scholar 

  • Varela M, Fernandez E, Serret P (2002) Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep Sea Res Part II 49:749–768

    CAS  Google Scholar 

  • Vaulot D, Partensky F, Neveux J, Mantoura RFC, Llewellyn CA (1990) Winter presence of prochlorophytes in surface waters of the northwestern Mediterranean Sea. Limnol Oceanogr 35:1156–1164

    Google Scholar 

  • Veldhuis MJW, Kraay GW (1990) Vertical distribution and pigment composition of a picoplanktonic prochlorophyte in the subtropical North Atlantic: a combined study of HPLC-analysis of pigments and flow cytometry. Mar Ecol Prog Ser 68:121–127

    CAS  Google Scholar 

  • Velo-Suárez L, Fernand L, Gentien P, Reguera B (2010) Hydrodynamic conditions associated with the formation, maintenance and dissipation of a phytoplankton thin layer in a coastal upwelling system. Cont Shelf Res 30:193–202

    Google Scholar 

  • Venrick E (1993) Phytoplankton seasonality in the central North Pacific: the endless summer reconsidered. Limnol Oceanogr 38:1135–1149

    CAS  Google Scholar 

  • Verburg P, Hecky RE, Kling H (2003) Ecological consequences of a century of warming in Lake Tanganyika. Science 301:505–507

    CAS  Google Scholar 

  • Verlencar X, Somasunder K, Qasim S (1990) Regeneration of nutrients and biological productivity in Antarctic waters. Mar Ecol Prog Ser 61:41–59

    CAS  Google Scholar 

  • Verne-Mismer J, Ocampo R, Callot H, Albrecht P (1988) Molecular fossils of chlorophyll c of the 17-nor-DPEP Series. Structure determination, synthesis, geochemical significance. Tetrah Lett 29:371–374

    CAS  Google Scholar 

  • Verne-Mismer J, Ocampo R, Callot H, Albrecht P (1990) New chlorophyll fossils from moroccan oil shales. Porphyrins derived from chlorophyll C3 or a related pigment? Tetrah Lett 31:1751–1754

    CAS  Google Scholar 

  • Vicente E, Miracle M (1984) Distribution of photosynthetic organisms in a temporal stratified karstic pond near Cuenca (Spain). Verh Internat Verein Limnol 22:1504–1710

    Google Scholar 

  • Viličić D, Legović T, Žutić V (1989) Vertical distribution of phytoplankton in a stratified estuary. Aquat Sci 51:31–46

    Google Scholar 

  • Vincent WF (1983) Phytoplankton production and winter mixing: contrasting effects in two oligotrophic lakes. J Ecol 71:1–20

    CAS  Google Scholar 

  • Vincent W, Gibbs M, Dryden S (1984) Accelerated eutrophication in a New Zealand lake: Lake Rotoiti, central North Island. NZ J Mar Freshw Res 18:431–440

    Google Scholar 

  • Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99

    CAS  Google Scholar 

  • Volkman J, Burton H, Everitt D, Allen D (1988) Pigment and lipid compositions of algal and bacterial communities in Ace Lake, Vestfold Hills, Antarctica. Hydrobiologia 165:41–57

    CAS  Google Scholar 

  • von Elbe JH, Schwartz SJ (1996) Colorants. In: Fennema OR (ed) Food chemistry. Marcel Dekker, New York, pp 651–722

    Google Scholar 

  • Wakeham SG (1995) Lipid biomarkers for heterotrophic alteration of suspended particulate organic matter in oxygenated and anoxic water columns of the ocean. Deep Sea Res Part I 42:1749–1771

    CAS  Google Scholar 

  • Wakeham S, Lee C (1993) Production, transport, and alteration of particulate organic matter in the marine water column. In: Engel M, Macko S (eds) Org Geochem. Plenum Press, New York, pp 145–169

    Google Scholar 

  • Walsby AE, Hayes PK, Boje R, Stal LJ (1997) The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytol 136:407–417

    Google Scholar 

  • Wang F, Wang X, Zhao Y, Yang Z (2012) Long-term changes of water level associated with chlorophyll a concentration in Lake Baiyangdian, North China. Proc Environ Sci 13:1227–1237

    Google Scholar 

  • Watson S, McCauley E (1988) Contrasting patterns of net-and nanoplankton production and biomass among lakes. Can J Fish Aquat Sci 45:915–920

    Google Scholar 

  • Watson S, McCauley E, Downing JA (1992) Sigmoid relationships between phosphorus, algal biomass, and algal community structure. Can J Fish Aquat Sci 49:2605–2610

    CAS  Google Scholar 

  • Weber TS, Deutsch C (2010) Ocean nutrient ratios governed by plankton biogeography. Nature 467:550–554

    CAS  Google Scholar 

  • Welch EB, Lindell T (1992) Ecological effects of wastewater: applied limnology and pollution effects. Chap-man and Hall, London

    Google Scholar 

  • Welschmeyer N, Lorenzen C (1985) Role of herbivory in controlling phytoplankton abundance: annual pigment budget for a temperate marine fjord. Mar Biol 90:75–86

    CAS  Google Scholar 

  • Wentworth AD, Jones LH, Wentworth P, Janda KD, Lerner RA (2000) Antibodies have the intrinsic capacity to destroy antigens. PNAS 97:10930–10935

    CAS  Google Scholar 

  • Wentworth P Jr, Jones LH, Wentworth AD, Zhu X, Larsen NA, Wilson IA, Xu X, Goddard WA III, Janda KD, Eschenmoser A (2001) Antibody catalysis of the oxidation of water. Science 293:1806–1811

    CAS  Google Scholar 

  • Weston K, Fernand L, Mills D, Delahunty R, Brown J (2005) Primary production in the deep chlorophyll maximum of the central North Sea. J Plankton Res 27:909–922

    CAS  Google Scholar 

  • Westrich JT, Berner RA (1984) The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol Oceanogr 29:236–249

    CAS  Google Scholar 

  • Wheeler PA, Gosselin M, Sherr E, Thibaultc D, Kirchman DL, Benner R, Whitledge TE (1996) Active cycling of organic carbon in the central Arctic Ocean. Nature 380:697–699

    CAS  Google Scholar 

  • White EM, Kieber DJ, Sherrard J, Miller WL, Mopper K (2010) Carbon dioxide and carbon monoxide photoproduction quantum yields in the Delaware estuary. Mar Chem 118:11–21

    CAS  Google Scholar 

  • Whitehouse M, Korb R, Atkinson A, Thorpe S, Gordon M (2008) Formation, transport and decay of an intense phytoplankton bloom within the high-nutrient low-chlorophyll belt of the Southern Ocean. J Mar Sys 70:150–167

    Google Scholar 

  • Wilhelm C, Rudolph I, Renner W (1991) A quantitative method based on HPLC-aided pigment analysis to monitor structure and dynamics of the phytoplankton assemblage–a study from Lake Meerfelder Maar (Eifel, Germany). Arch Hydrobiol 123:21–35

    CAS  Google Scholar 

  • Williams R, Claustre H (1991) Photosynthetic pigments as biomarkers of phytoplankton populations and processes involved in the transformation of particulate organic matter at the biotrans site (478°N, 208°W). Deep Sea Res Part I 38:347–355

    CAS  Google Scholar 

  • Willstätter R, Stoll A (1913) Die Wirkungen der Chlorophyllase. In: Willstätter R, Stoll A (eds) Untersuchungen über Chlorophyll. Springer, Berlin, pp 172–187

    Google Scholar 

  • Wilson CL, Hinman NW, Cooper WJ, Brown CF (2000) Hydrogen peroxide cycling in surface geothermal waters of Yellowstone National Park. Environ Sci Technol 34:2655–2662

    CAS  Google Scholar 

  • Winder M, Cloern JE (2010) The annual cycles of phytoplankton biomass. Phil Trans R Soc B 365:3215–3226

    Google Scholar 

  • Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc B 276:427–435

    Google Scholar 

  • Windolf J, Jeppesen E, Jensen JP, Kristensen P (1996) Modelling of seasonal variation in nitrogen retention and in-lake concentration: a four-year mass balance study in 16 shallow Danish lakes. Biogeochemistry 33:25–44

    Google Scholar 

  • Wojciechowska W (1989) Correlation between biomass, chlorophyll-a, photosynthesis and phytoplankton structure in a lake. Ekol Polska ELPLBS 37:59–82

    Google Scholar 

  • Wolf H, Brockmann H, Biere H, Inhoffen HH (1967) Chlorophyll and hemin XIII Preparation of diastereomeric 10-methoxy(pyro)methylpheophorbide a and determination of the relative configuration at the C-10 atom. Annalen 704:208–225

    CAS  Google Scholar 

  • Woodward RB (1961) The total synthesis of chlorophyll. Pure Appl Chem 2:383–404

    CAS  Google Scholar 

  • Woodward R (1990) The total synthesis of chlorophyll a. Tetrahedron 46:7599–7659

    CAS  Google Scholar 

  • Woodward RB, Ayer WA, Beaton JM, Bickelhaupt F, Bonnett R, Buchschacher P, Closs GL, Dutler H, Hannah J, Hauck FP, Ito S, Langeman A, Le Goff E, Leimgruber W, Lwowski W, Sauer J, Valenta Z, Volz H (1960) The total synthesis of chlorophyll. J Am Chem Soc 82:3800–3802. doi:101021/ja01499a093

    CAS  Google Scholar 

  • Wu SM, Rebeiz C (1985) Chloroplast biogenesis. Molecular structure of chlorophyll b (E489 F666). J Biol Chem 260:3632–3634

    CAS  Google Scholar 

  • Wurtsbaugh WA, Gross HP, Budy P, Luecke C (2001) Effects of epilimnetic versus metalimnetic fertilization on the phytoplankton and periphyton of a mountain lake with a deep chlorophyll maxima. Can J Fish Aquat Sci 58:2156–2166

    Google Scholar 

  • Wüthrich KL, Bovet L, Hunziker PE, Donnison IS, Hörtensteiner S (2000) Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J 21:189–198

    Google Scholar 

  • Xenopoulos MA, Bird DF (1997) Effect of acute exposure to hydrogen peroxide on the production of phytoplankton and bacterioplankton in a mesohumic lake. Photochem Photobiol 66:471–478

    CAS  Google Scholar 

  • Xia B, Ma S, Chen J, Zhao J, Chen B, Wang F (2010) Distribution of organic carbon and carbon fixed strength of phytoplankton in Enteromorpha prolifera outbreak area of the Western South Yellow Sea, 2008]. Huan Jing Ke Xue 31:1442–1449 (in Chinese with Abstract in English)

    Google Scholar 

  • Xiu P, Liu Y, Li G, Xu Q, Zong H, Rong Z, Yin X, Chai F (2009) Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model. Continent Shelf Res 29:2270–2279

    Google Scholar 

  • Yacobi YZ (2006) Temporal and vertical variation of chlorophyll a concentration, phytoplankton photosynthetic activity and light attenuation in Lake Kinneret: possibilities and limitations for simulation by remote sensing. J Plankton Res 28:725–736

    CAS  Google Scholar 

  • Yacobi YZ, Pollingher U, Gonen Y, Gerhardt V, Sukenik A (1996) HPLC analysis of phytoplankton pigments from Lake Kinneret with special reference to the bloom-forming dinoflagellate Peridinium gatunense (Dinophyceae) and chlorophyll degradatio products. J Plankton Res 18:1781–1796

    CAS  Google Scholar 

  • Yamashita Y, Tanoue E (2008) Production of bio-refractory fluorescent dissolved organic matter in the ocean interior. Nat Geosci 1:579–582

    CAS  Google Scholar 

  • Yamauchi N, Harada K, Watada AE (1997) In vitro chlorophyll degradation in stored broccoli (Brassica oleracea L. var. italica Plen.) florets. Postharvest Biol Technol 12:239–245

    CAS  Google Scholar 

  • Yoshioka T (1997) Phytoplanktonic carbon isotope fractionation: equations accounting for CO2-concentrating mechanisms. J Plankton Res 19:1455–1476

    CAS  Google Scholar 

  • Yoshioka T, Ueda S, Khodzher T, Bashenkhaeva N, Korovyakova I, Sorokovikova L, Gorbunova L (2002) Distribution of dissolved organic carbon in Lake Baikal and its watershed. Limnology 3:159–168

    CAS  Google Scholar 

  • Yoshioka T, Mostofa KMG, Konohira E, Tanoue E, Hayakawa K, Takahashi M, Ueda S, Katsuyama M, Khodzher T, Bashenkhaeva N (2007) Distribution and characteristics of molecular size fractions of freshwater-dissolved organic matter in watershed environments: its implication to degradation. Limnology 8:29–44

    CAS  Google Scholar 

  • Yoshiyama K, Nakajima H (2002) Catastrophic transition in vertical distributions of phytoplankton: alternative equilibria in a water column. J Theor Biol 216:397–408

    Google Scholar 

  • Yoshiyama K, Mellard JP, Litchman E, Klausmeier CA (2009) Phytoplankton competition for nutrients and light in a stratified water column. Am Nat 174:190–203

    Google Scholar 

  • Yuan J, Shiller AM (2001) The distribution of hydrogen peroxide in the southern and central Atlantic ocean. Deep Sea Res Part II 48:2947–2970

    CAS  Google Scholar 

  • Yuma M, Timoshkin OA, Melnik NG, Khanaev IV, Ambali A (2006) Biodiversity and food chains on the littoral bottoms of Lakes Baikal, Biwa, Malawi and Tanganyika: working hypotheses. Hydrobiologia 568:95–99

    Google Scholar 

  • Zepp RG, Skurlatov Y, Pierce J (1987) Algal-induced decay and formation of hydrogen peroxide in water: its possible role in oxidation of anilines by algae. In: Zika RG and Cooper WJ (eds) Photochemistry of environmental aquatic systems, ACS Symp Ser 327, Am Chem Soc, Washington DC, pp 213–224

    Google Scholar 

  • Zepp R, Skurlatov Y, Pierce J (1987) Algal-induced decay and formation of hydrogen peroxide in water: its possible role in oxidation of anilines by algae. In: Zika RG, Cooper WJ (eds) Photochemistry of environmental Aquatic systems. ACS Symp Ser 327, Am Chem Soc, Washington DC, pp 213–224

    Google Scholar 

  • Zepp RG, Faust BC, Hoigne J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26:313–319

    CAS  Google Scholar 

  • Zepp R, Erickson D III, Paul N, Sulzberger B (2011) Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem Photobiol Sci 10:261–279

    CAS  Google Scholar 

  • Zhang YL, Qin BQ (2007) Variations in spectral slope in Lake Taihu, a large subtropical shallow lake in China. J Great Lakes Res 33:483–496

    Google Scholar 

  • Zhang Y, Zhang B, Wang X, Li J, Feng S, Zhao Q, Liu M, Qin B (2007a) A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China. Hydrobiologia 592:105–120

    CAS  Google Scholar 

  • Zhang YL, Zhang EL, Liu ML, Wang X, Qin BQ (2007b) Variation of chromophoric dissolved organic matter and possible attenuation depth of ultraviolet radiation in Yunnan Plateau lakes. Limnology 8:311–319

    Google Scholar 

  • Zhang Y, van Dijk MA, Liu M, Zhu G, Qin B (2009) The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Water Res 43:4685–4697

    CAS  Google Scholar 

  • Zhao J, Cao W, Wang G, Yang D, Yang Y, Sun Z, Zhou W, Liang S (2009) The variations in optical properties of CDOM throughout an algal bloom event. Estuar Coast Shelf Sci 82:225–232

    CAS  Google Scholar 

  • Zhu ZY, Ng WM, Liu SM, Zhang J, Chen JC, Wu Y (2009) Estuarine phytoplankton dynamics and shift of limiting factors: A study in the Changjiang (Yangtze River) Estuary and adjacent area. Estuar Coast Shelf Sci 84:393–401

    CAS  Google Scholar 

  • Ziegler R, Blaheta A, Guha N, Schönegge B (1988) Enzymatic formation of pheophorbide and pyropheophorbide during chlorophyll degradation in a mutant of Chlorella fusca Shihira Ee Kraus. J Plant Physiol 132:327–332

    CAS  Google Scholar 

  • Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Institute of Geochemistry and Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences, China. This work was also partly supported by the University of Turin and Centro Interdipartimentale NatRisk, I-10095 Grugliasco (TO), Italy; Lake Biwa Environmental Research Institute and Kyoto University, Japan; and Semenov Institute of Chemical Physics, Russian Academy of Sciences, Russia. This chapter acknowledges the Copyright (2005) by the Japanese Society of Limnology; reprinted (adapted) with permission from Clarke RH, Connors RE, Schaafsma TJ, Kleibeuker JF, Platenkamp RJ, The triplet state of chlorophylls. J Am Chem Soc 98(12):3674–3677. Copyright (1976) American Chemical Society; reprinted from Water Res, 43(18), Zhang Y, van Dijk MA, Liu M, Zhu G, Qin B, The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence, 4685–4697, Copyright (2009), with permission from Elsevier; reprinted from Biochimica et Biophysica Acta (BBA) Bioenergetics, 1807(8), Hörtensteiner S, Kräutler B, Chlorophyll breakdown in higher plants, 977–988, Copyright (2011), with permission from Elsevier; reprinted from Mar Chem, 119(1–4), Christodoulou S, Joux F, Marty J-C, Sempéré R, Rontani J-F, Comparative study of UV and visible light induced degradation of lipids in non-axenic senescent cells of Emiliania huxleyi, 139–152, Copyright (2010), with permission from Elsevier; and reprinted from Geochim Cosmochim Acta, 57(1), Ming-Yi S, Lee C, Aller RC, Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments, 147–157, Copyright (1993), with permission from Elsevier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan M. G. Mostofa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mostofa, K.M.G. et al. (2013). Chlorophylls and their Degradation in Nature. In: Mostofa, K., Yoshioka, T., Mottaleb, A., Vione, D. (eds) Photobiogeochemistry of Organic Matter. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32223-5_8

Download citation

Publish with us

Policies and ethics