Photoinduced Generation of Hydroxyl Radical in Natural Waters

  • Khan M. G. Mostofa
  • Cong-qiang Liu
  • Hiroshi Sakugawa
  • Davide Vione
  • Daisuke Minakata
  • M. Saquib
  • M. Abdul Mottaleb
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Hydroxyl radical (HO) is a short-lived free radical, and it is the most potent oxidizing transient among the reactive oxygen species. It is an effective, nonselective and strong oxidant that is ubiquitously formed in natural sunlit surface waters (rivers, lakes and seawater and so on), rain, dew, cloud, fog, snow, aerosol, and in all living organisms.

References

  1. Abele-Oeschger D, Oeschger R, Theede H (1994) Biochemical adaptations of Nereis diversicolor (Polychaeta) to temporarily increased hydrogen peroxide levels in intertidal sandflats. Mar Ecol Prog Ser 106:101–110CrossRefGoogle Scholar
  2. al Housari F, Vione D, Chiron S, Barbati S (2010) Reactive photoinduced species in estuarine waters Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes. Photochem Photobiol Sci 9:78–86CrossRefGoogle Scholar
  3. Aldrich AP, van Berg den CMG, Thies H, Nickus U (2001) The redox speciation of iron in two lakes. Mar Freshw Res 52:885–890CrossRefGoogle Scholar
  4. Alegria AE, Ferrer A, Sepulveda E (1997) Photochemistry of water-soluble quinones production of a water-derived spin adduct. Photochem Photobiol 66:436–442CrossRefGoogle Scholar
  5. Allen JM, Lucas S, Allen SK (1996) Formation of hydroxyl radical in illuminated surface waters contaminated with acid mine drainage. Environ Sci Technol 15:107–113Google Scholar
  6. Anastasio C, Jordan AL (2004) Photoformation of hydroxyl radical and hydrogen peroxide in aerosol particles from Alert, Nunavut: implications for aerosol and snowpack chemistry in the Arctic. Atmos Environ 38:1153–1166CrossRefGoogle Scholar
  7. Anastasio C, Newberg JT (2007) Sources and sinks of hydroxyl radical in sea-salt particles. J Geophys Res 112:D10306. doi:101029/2006JD008061 CrossRefGoogle Scholar
  8. Anastasio C, Galbavy ES, Hutterli MA, Burkhart JF, Friel DK (2007) Photoformation of hydroxyl radical on snow grains at Summit Greenland. Atmos Environ 41:5110–5121CrossRefGoogle Scholar
  9. Arakaki T, Faust BC (1998) Sources, sinks, and mechanisms of hydroxyl radical (OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: the role of the Fe(r) (r = II, III) photochemical cycle. J Geophys Res 103(D3):3487–3504Google Scholar
  10. Arakaki T, Miyake T, Shibata M, Sakugawa H (1998) Measurement of photolytically formed hydroxyl radical in rain and dew waters. Nippon Kagaku Kaishi 9:619–625CrossRefGoogle Scholar
  11. Arakaki T, Miyake T, Hirakawa T, Sakugawa H (1999a) pH dependent photoformation of hydroxyl radical and absorbance of aqueous-phase N(III) (HNO2 and NO2-). Environ Sci Technol 33:2561–2565CrossRefGoogle Scholar
  12. Arakaki T, Miyake T, Shibata M, Sakugawa H (1999b) Photochemical formation and scavenging of hydroxyl radical in rain and dew waters. Nippon Kagaku Kaishi 5:335–340 (in Japanese)Google Scholar
  13. Arslan I, Barcioglu A, Tuhkanen T (1999) Oxidative treatment of simulated dyehouse effluent by UV and near-UV light assisted Fenton’s reagent. Chemosphere 39:2767–2783CrossRefGoogle Scholar
  14. Arslan I, Balcioglu IA, Bahnemann DW (2000) Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dyes Pigm 47:207–218CrossRefGoogle Scholar
  15. Assel M, Laenen R, Laubereau A (1998) Ultrafast electron trapping in an aqueous NaCl-solution. Chem Phys Lett 289:267–274CrossRefGoogle Scholar
  16. Balmer ME, Sulzberger B (1999) Atrazine degradation in irradiated iron/oxalate system: effects of pH and oxalate. Environ Sci Technol 33:2418–2424CrossRefGoogle Scholar
  17. Barb WG, Boxendale JH, George P, Hargrove KR (1951) Reactions of ferrous and ferric ions with hydrogen peroxide, part II The ferric ion reaction. Trans Faraday Soc 47:591–616CrossRefGoogle Scholar
  18. Barbeni M, Minero C, Pelizzetti E (1987) Chemical degradation of chlorophenols with Fenton’s reagent. Chemosphere 16:2225–2237CrossRefGoogle Scholar
  19. Bard AJ (1979) Photoelectro chemistry and heterogeneous photocatalysis at semiconductors. J Photochem 10:59–75CrossRefGoogle Scholar
  20. Baxendale JH, Wilson JA (1956) The photolysis of hydrogen peroxide at high light intensities. Trans Faraday Soc 53:344–356CrossRefGoogle Scholar
  21. Benson SW (1960) The foundation of chemical kinetics Ch 15. McGraw-Hill, New YorkGoogle Scholar
  22. Berger P, Leitner N Karpel Vel, Doré M, Legube B (1999) Ozone and hydroxyl radicals induced oxidation of glycine. Water Res 33:433–441CrossRefGoogle Scholar
  23. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316CrossRefGoogle Scholar
  24. Bertilsson S, Tranvik LJ (1998) Photolytically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr 43:885–895CrossRefGoogle Scholar
  25. Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO2/O2∙− radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100CrossRefGoogle Scholar
  26. Bissett DL, Chatterjee R, Hannon DP (1991) Chronic ultraviolet radiation-induced increase in skin iron and the photoprotective effects of topically applied iron chelators. Photochem Photobiol 54:215–223CrossRefGoogle Scholar
  27. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194CrossRefGoogle Scholar
  28. Blough NV (1988) Electron paramagnetic resonance measurements of photochemical radical production in humic substances: 1 Effects of O2 and charge on radical scavenging by nitroxides. Environ Sci Technol 22:77–82CrossRefGoogle Scholar
  29. Blough NV, Zepp RG (1995) Reactive oxygen species in natural waters. In: Foote CS, Valentine JS (eds) Active oxygen in chemistry. Blackie Academic and Professional, New York, pp 280–333Google Scholar
  30. Bossmann SH, Oliveros E, Gob S, Siegwart S, Dahlen EP, Payawan L, Straub M, Worner M, Braun AM (1998) New evidence against hydroxyl radicals as reactive intermediates in the thermal and photolytically enhanced Fenton reactions. J Phys Chem A 102:5542–5550CrossRefGoogle Scholar
  31. Bourdat A-G, Douki T, Frelon S, Gasparutto D, Cadet J (2000) Tandem base lesions are generated by hydroxyl radical within isolated DNA in aerated aqueous solution. J Am Chem Soc 122:4549–4556CrossRefGoogle Scholar
  32. Brezonik PL, Fulkerson-Brekken J (1998) Nitrate-induced photolysis in natural waters: controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents. Environ Sci Technol 32:3004–3010CrossRefGoogle Scholar
  33. Brigante M, Charbouillot T, Vione D, Mailhot G (2010a) Photochemistry of 1-nitronaphthalene: a potential source of singlet oxygen and radical species in atmospheric waters. J Phys Chem A 114:2830–2836CrossRefGoogle Scholar
  34. Brigante M, Charbouillot T, Vione D, Mailhot G (2010b) Photochemistry of 1-nitronaphthalene: a potential source of singlet oxygen and radical species in atmospheric waters. J Phys Chem A 114:2830–2836CrossRefGoogle Scholar
  35. Buettner GR (1987) Activation of oxygen by metal complexes and its relevance to autoxidative processes in living systems. Bioelectochem Bioenerg 18:29–36CrossRefGoogle Scholar
  36. Buettner GR (1988) In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J Biochem Biophys Methods 16:27–40CrossRefGoogle Scholar
  37. Buettner GR (1993) The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543CrossRefGoogle Scholar
  38. Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541CrossRefGoogle Scholar
  39. Buettner GR, Oberley LW, Leuthauser SWHC (1978) The effect of iron on the distribution of superoxide and hydroxyl radicals as seen by spin trapping and on the superoxide dismutase assay. Photochem Photobiol 28:693–695CrossRefGoogle Scholar
  40. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reaction of hydrated electrons, hydrogen atoms and hydroxyl radicals ( OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886CrossRefGoogle Scholar
  41. Cadet J, Delatour T, Douki T, Gasparutto D, Pouget J-P, Ravanat J-L, Sauvaigo S (1999) Hydroxyl radicals and DNA base damage. Mutat Res Fundam Mol Mech Mutagen 424:9–21CrossRefGoogle Scholar
  42. Canonica S, Kohn T, Mac M, Real FJ, Wirz J, von Gunten U (2005) Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds. Environ Sci Technol 39:9182–9188Google Scholar
  43. Chen R, Pignatello JJ (1997) Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ Sci Technol 31:2399–2406CrossRefGoogle Scholar
  44. Chen C, Li X, Ma W, Zhao J, Hidaka H, Serpone N (2001) Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism. J Phys Chem B 106:318–324CrossRefGoogle Scholar
  45. Chu L, Anastasio C (2003) Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice. J Phys Chem A 107:9594–9602CrossRefGoogle Scholar
  46. Chu L, Anastasio C (2005) Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide. J Phys Chem A 109:6264–6271CrossRefGoogle Scholar
  47. Cohen G, Heikkila E (1974) The Generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249:2447–2452Google Scholar
  48. Collen J, del Rio MJ, Garcia-Reina G, Pedersen M (1995) Photosynthetic production of hydrogen peroxide by Ulva rigida C Ag (Chlorophyta). Planta 196:225–230CrossRefGoogle Scholar
  49. Cooper WJ, Zika RG, Petasne RG, Fischer AM (1988) Sunlight-induced photochemistry of humic substances in natural waters: major reactive species In: Suffett IH, MacCarthy P (eds) Aquatic humic substances. American Chemical Society, Washington, pp 333–362Google Scholar
  50. Cooper WJ, Nickelson MG, Waite TD, Kurucz CN (1991) High energy electron beam irradiation: an advanced oxidation process for the treatment of aqueous based organic hazardous wastes. J Environ Sci Health A27:219Google Scholar
  51. Cooper WJ, Sawal KL, Hoogland YS, Slifker R, Nickelsen MG, Kurucz CN, Waite TD (1996) Disinfection by-product precursor removal from natural waters using gamma radiation to stimulate an innovative water treatment process. In: Minear RA, Amy GL (eds) Disinfection bi-products in water treatment. CRC Press, Inc, Boca Raton, pp 151–162Google Scholar
  52. Croot PL, Laan P, Nishioka J, Strass V, Cisewski B, Boye M, Timmermans KR, Bellerby RG, Goldson L, Nightingale P, de Baar HJW (2005) Spatial and temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment. Mar Chem 95:65–88CrossRefGoogle Scholar
  53. Das R, Dutta BK, Maurino V, Vione D, Minero C (2009) Suppression of inhibition of substrate photodegradation by scavengers of hydroxyl radicals: the solvent-cage effect of bromide on nitrate photolysis. Environ Chem Lett 7:337–342CrossRefGoogle Scholar
  54. de Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ Sci Technol 33:2726–2732CrossRefGoogle Scholar
  55. del Vecchio R, Blough NV (2002) Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling. Mar Chem 78:231–253CrossRefGoogle Scholar
  56. Dister B, Zafiriou OC (1993) Photochemical free-radical production-rates in the eastern Caribbean. J Geophys Res Oceans 98(C2):2341–2352Google Scholar
  57. Draper WM, Crosby DG (1981) Hydrogen peroxide and hydroxyl radical intermediates in indirect photolysis reactions in water. J Agric Food Chem 32:231–237CrossRefGoogle Scholar
  58. Draper WM, Crosby DG (1984) Solar photooxidation of pesticides in dilute H2O2. J Agric Food Chem 32:231–237CrossRefGoogle Scholar
  59. Duesterberg CK, Waite TD (2006) Process optimization of Fenton oxidation using kinetic modeling. Environ Sci Technol 40:4189–4195CrossRefGoogle Scholar
  60. Duesterberg CK, Cooper WJ, Waite TD (2005) Fenton-mediated oxidation in the presence and absence of oxygen. Environ Sci Technol 39:5052–5058CrossRefGoogle Scholar
  61. Duesterberg CK, Mylon SE, Waite TD (2008) pH effects on iron-catalyzed oxidation using Fenton’s reagent. Envion Sci Technol 42:8522–8527CrossRefGoogle Scholar
  62. Dykens JA, Shick JM, Benoit C, Buettner GR, Winston GW (1992) Oxygen radical production in the sea anemone Anthopleura Elegantissima and its endosymbiotic algae. J Exp Biol 168:219–241Google Scholar
  63. Emilio CA, Jardim WF, Littera MI, Mansilla HD (2002) EDTA destruction using the solar ferrioxalate AOT comparison with solar photo-Fenton. J Photochem Photobiol A Chem 151:121–127CrossRefGoogle Scholar
  64. Emmenegger L, Schwarzenbach R, Sigg L, Sulzberger B (2001) Light-induced redox cycling of iron in circumneutral lakes. Limnol Oceanogr 46:49–61CrossRefGoogle Scholar
  65. Ervens B, Gligorovski B, Herrmann H (2003) Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions. Phys Chem Chem Phys 5:1811–1824CrossRefGoogle Scholar
  66. Fang X, Mark G, von Sonntag C (1996) OH radical formation by ultrasound in aqueous solutions part I: the chemistry underlying the terephthalate dosimeter. Ultrason Sonochem 3:57–63CrossRefGoogle Scholar
  67. Farias J, Rossetti GH, Albizzati ED, Alfano OM (2007) Solar degradation of formic acid: temperature effects on the photo-Fenton reaction. Ind Eng Chem Res 46:7580–7586CrossRefGoogle Scholar
  68. Farias J, Albizzati ED, Alfano OM (2010) New pilot-plant photo-Fenton solar reactor for water decontamination. Ind Eng Chem Res 49:1265–1273CrossRefGoogle Scholar
  69. Faust BC (1994) A review of the photochemical redox reactions of iron species in atmosphere, oceanic, and surface waters: influences of geochemical cycles and oxidant formation. Helz GR, Zepp RG, Crosby DG (eds) Aquatic and surface photochemistry. Lewis Publishers, Boca Raton, pp 3–38Google Scholar
  70. Faust BC, Allen JM (1992) Aqueous-phase photochemical sources of peroxyl radicals and singlet molecular-oxygen in clouds and fog. J Geophys Res Atmos 97(D12):12913–12926Google Scholar
  71. Faust BC, Hoigne J (1987) Sensitized photooxidation of phenols by fulvic acid and in natural waters. Environ Sci Technol 21:957–964CrossRefGoogle Scholar
  72. Faust BC, Zepp RG (1993) Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ Sci Technol 27:2517–2522CrossRefGoogle Scholar
  73. Fenton HJ (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910CrossRefGoogle Scholar
  74. Fischer AM, Kliger DS, Winterle JS, Mill T (1985) Direct observations of phototransients in natural waters. Chemosphere 14:1299–1306CrossRefGoogle Scholar
  75. Fox MA (1993) The role of hydroxyl radicals in the photocatalyzed detoxification of organic pollutants—pulse-radiolysis and time-resolved diffuse-reflectance measurements. In: Ollis DF, Alekabi H (eds) Trace metals in the environment, 3, pp 163–167Google Scholar
  76. Fu P, Mostofa KMG, Wu FC, Liu CQ, Li W, Liao H, Wang L, Wang J, Mei Y (2010) Excitation-emission matrix characterization of dissolved organic matter sources in two eutrophic lakes (Southwestern China Plateau). Geochem J 44:99–112Google Scholar
  77. Gallard H, De Laat J Legube B (1998) Effect of pH on the oxidation rate of organic compounds by FeII/H2O2 mechanisms and simulation. New J Chem 22:263–268Google Scholar
  78. Gan D, Jia M, Vaughan PP, Falvey DE, Blough NV (2008) Aqueous photochemistry of methyl-benzoquinone. J Phys Chem A 112:2803–2812CrossRefGoogle Scholar
  79. Gao H, Zepp RG (1998) Factors influencing photoreactions of dissolved organic matter in a coastal river of the southern United States. Environ Sci Technol 32:2940–2946CrossRefGoogle Scholar
  80. Gjessing ET, Källqvist T (1991) Algicidal and chemical effect of uv-radiation of water containing humic substances. Water Res 25:491–494CrossRefGoogle Scholar
  81. Goldstein S, Rabani J (2008) Polychromatic UV photon irradiance measurements using chemical actinometers based on NO3 and H2O2 excitation: applications for industrial photoreactors. Environ Sci Technol 42:3248–3253CrossRefGoogle Scholar
  82. Goldstein S, Aschengrau D, Diamant Y, Rabani J (2007) Photolysis of aqueous H2O2: quantum yield and applications for polychromatic UV actinometry in photoreactors. Environ Sci Technol 41:7486–7490CrossRefGoogle Scholar
  83. Goldstone JV, Pullin MJ, Bertilsson S, Voelker BM (2002) Reactions of hydroxyl radical with humic substances: bleaching, mineralization, and production of bioavailable carbon substrates. Environ Sci Technol 36:364–372CrossRefGoogle Scholar
  84. Gopinathan C, Damle PS, Hart EJ (1972) Gamma-Ray irradiated sodium chloride as a source of hydrated electrons. J Phys Chem 76:3694–3698CrossRefGoogle Scholar
  85. Grannas AM, Martin CB, Chin Y, Platz M (2006a) Hydroxyl radical production from irradiated Arctic dissolved organic matter. Biogeochemistry 78:51–66CrossRefGoogle Scholar
  86. Grannas AM, Martin CB, Chin Y, Platz M (2006b) Hydroxyl radical production from irradiated Arctic dissolved organic matter. Biogeochemistry 78:51–66CrossRefGoogle Scholar
  87. Grebel JE, Pignatello JJ, Song W, Cooper WJ, Mitch WA (2009) Impact of halides on the photobleaching of dissolved organic matter. Mar Chem 115:134–144CrossRefGoogle Scholar
  88. Green R, Charlton R, Seftel H, Bothwell T, Mayet F, Adams B, Finch C, Layrisse M (1968) Body iron excretion in man: a collaborative study. Am J Med 45:336–353CrossRefGoogle Scholar
  89. Haag WR, Hoigné J (1985) Photo-sensitized oxidation in natural water via OH radicals. Chemosphere 14:1659–1671CrossRefGoogle Scholar
  90. Haag WR, Yao CCD (1992) Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26:1005–1013CrossRefGoogle Scholar
  91. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond Ser A 147:332–351Google Scholar
  92. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359:25–40CrossRefGoogle Scholar
  93. Hardwick TJ (1957) The rate constant of the reaction between ferrous ions and hydrogen peroxide in acid solution. Can J Chem 35:428–436CrossRefGoogle Scholar
  94. Henglein A (1987) Sonochemistry: historical developments and modern aspects. Ultrasonics 25:6–16CrossRefGoogle Scholar
  95. Hislop KA, Bolton JR (1999) The photochemical generation of hydroxyl radicals in the UV-vis/ferrioxalate/H2O2 system. Environ Sci Technol 33:3119–3126CrossRefGoogle Scholar
  96. Ho P (1986) Photooxidation of 2,4 dinitrotoluene in aqueous solution in the presence of H2O2. Environ Sci Technol 20:260–267CrossRefGoogle Scholar
  97. Hoigné J, Bader H (1978) Ozone and hydroxyl radical-initiated oxidations of organic and organometallic trace impurities in water. In: Brinkman FE, Bellama JM (eds) Organometals and organometalloids occurrence and fate in the environment. American Chemical Society, Washington, pp 292–313Google Scholar
  98. Hoigné J, Bader H (1979) Ozonation of water: oxidation-competition values of different types of waters used in Switzerland. Ozone Sci Eng 1:357–372CrossRefGoogle Scholar
  99. Hoigné J, Faust BC, Haag WR, Zepp RG (1988) In influence of aquatic humic substances on fate and treatment of pollutants. In: MacCarthy P, Suffet IH (eds) ACS Symposium Series 219. American Chemical Society, Washington, pp 363–383Google Scholar
  100. Hoigné J, Faust BC, Haag WR, Scully FE, Zepp RG (1989) Aquatic humic substances as sources and sinks of photolytically produced transient reactants. In: Suffett IH, MacCarthy P (eds) Aquatic humic substances: influence on fate and treatment of pollutants. American Chemical Society, Washington, pp 363–381Google Scholar
  101. Hoigne′ J (1998) Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. In: Hrubec J (ed) The handbook of environmental chemistry. Springer Verlag, Heidelberg, pp 83–141Google Scholar
  102. Holder-Sandvik SL, Bilski P, Pakulski JD, Chignell CF, Coffin RB (2000) Photogeneration of singlet oxygen and free radicals in dissolved organic matter isolated from the Mississippi and Atchafalaya River plumes. Mar Chem 69:139–152CrossRefGoogle Scholar
  103. Hunt JP, Taube H (1952) The photochemical decomposition of hydrogen peroxide quantum yields, tracer and fractionation effects. J Am Chem Soc 74:5999–6002CrossRefGoogle Scholar
  104. Huston PL, Pignatello JJ (1996) Reduction of perchloroalkanes by ferrioxalate-generated carboxylate radical preceding mineralization by the photo-Fenton reaction. Environ Sci Technol 30:3457–3463CrossRefGoogle Scholar
  105. Jakob DJ (1986) Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate. J Geophys Res 91:9807–9826CrossRefGoogle Scholar
  106. Jeong J, Yoon J (2004) Dual roles of CO2 for degrading synthetic organic chemicals in the photo/ferrioxalate system. Water Res 38:3531–3540CrossRefGoogle Scholar
  107. Jeong J, Yoon J (2005) pH effect on OH radical production in photo/ferrioxalate system. Water Res 39:2893–2900CrossRefGoogle Scholar
  108. Jung YS, Lim WT, Park JY, Kim YH (2009) Effect of pH on Fenton and Fenton-like oxidation. Environ Technol 30:183–190CrossRefGoogle Scholar
  109. Kang SF, Liao CH, Po ST (2000) Decolorization of textile wastewater by photo-Fenton oxidation technology. Chemosphere 41:1287–1294CrossRefGoogle Scholar
  110. Kang NG, Lee D, Yoon J (2002) Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere 47:915–924CrossRefGoogle Scholar
  111. Katsumata H, Kaneco S, Suzuki T, Ohta K, Yobico Y (2006) Photo-Fenton degradation of alachlor in the presence of citrate solution. J Photochem Photobiol A Chem 180:38–45CrossRefGoogle Scholar
  112. Khan MMT, Martell AE (1967) Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen I cupric and ferric ion catalyzed oxidation. J Am Chem Soc 89:4176–4185CrossRefGoogle Scholar
  113. Kieber DJ, Blough NV (1990) Determination of carboncentered radicals in aqueous solution by liquid chromatography with fluorescence detection. Anal Chem 62:2275–2283CrossRefGoogle Scholar
  114. Kobayashi T, Nakatani N, Hirakawa T, Suzuki M, Miyake T, Chiwa M, Yuhara T, Hashimoto N, Inoue K, Yamamura K, Agus N, Sinogaya JR, Nakane K, Kume A, Arakaki T, Sakugawa H (2002) Variation in CO2 assimilation rate induced by simulated dew waters with different sources of hydroxyl radical (∙OH) on the needle surfaces of Japanese red pine (Pinus densiflora Sieb Et Zucc.). Environ Pollut 118:383–391CrossRefGoogle Scholar
  115. Komissarov GG (2003) Photosynthesis: the physical-chemical approach. J Adv Chem Phys 2:28–61Google Scholar
  116. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14CrossRefGoogle Scholar
  117. Kremer ML (1999) Mechanism of the Fenton reaction evidence for a new intermediate. Phys Chem Chem Phys 1:3595–3605CrossRefGoogle Scholar
  118. Kume A, Tsuboi N, Satomura T, Suzuki M, Chiwa M, Nakane K, Sakurai N, Horikoshi T, Sakugawa H (2000) Physiological characteristics of Japanese red pine, Pinus densiflora Sieb et Zucc, in declined forests at Mt Gokurakuji in Hiroshima Prefecture, Japan. Trees 14:305–311Google Scholar
  119. Kwan WP, Voelker BM (2002) Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ Sci Technol 36:1467–1476CrossRefGoogle Scholar
  120. Langford JH, Carey CH (1975) Outer-sphere oxidations of alcohols and formic acid by charge transfer excited states of iron(III) species. Can J Chem 53:2436–2440CrossRefGoogle Scholar
  121. Le Truong G, De Laat J, Legube B (2004) Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2. Water Res 38:2384–2394Google Scholar
  122. Lee C, Sedlak DL (2009) A novel homogeneous Fenton-like system with Fe(III)-phosphotungstate for oxidation of organic compounds at neutral pH values. J Mol Catal A Chem 311:1–6CrossRefGoogle Scholar
  123. Lee Y, Jeong J, Lee C, Yoon J (2003a) Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/H2O2 process. Chemosphere 51:901–912CrossRefGoogle Scholar
  124. Lee Y, Lee C, Yoon J (2003b) High temperature dependence of 2,4-dichlorophenoxyacetic acid degradation by Fe3+/H2O2 system. Chemosphere 51:963–971CrossRefGoogle Scholar
  125. Lee C, Keenan CR, Sedlak DL (2008) Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ Sci Technol 42:4921–4926CrossRefGoogle Scholar
  126. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698CrossRefGoogle Scholar
  127. Lehninger AL (1970) Biochemistry. Worth, New York, p 478Google Scholar
  128. Li SX, Hong HS, Zheng FY, Deng NS (2008) Effects of metal pollution and macronutrient enrichment on the photoproduction of hydroxyl radicals in seawater by the alga Dunaliella salina. Mar Chem 108:207–214CrossRefGoogle Scholar
  129. Lindsey ME, Tarr MA (2000a) Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere 41:409–417CrossRefGoogle Scholar
  130. Lindsey ME, Tarr MA (2000b) Inhibited hydroxyl radical degradation of aromatic hydrocarbons in the presence of dissolved fulvic acid. Water Res 34:2385–2389CrossRefGoogle Scholar
  131. Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888CrossRefGoogle Scholar
  132. Mabury SA (1993) Hydroxyl radical in natural waters. Ph D dissertation, University of California, Davis, CaliforniaGoogle Scholar
  133. Machulek A, Moraes JEF, Vautier-Giongo C, Silverio CA, Friedrich LC, Nascimento CAO, Gonzalez MC, Quina FH (2007) Abatement of the inhibitory effect of chloride anions on the photo-Fenton process. Environ Sci Technol 41:8459–8463CrossRefGoogle Scholar
  134. Mack J, Bolton JR (1999) Photochemistry of nitrite and nitrate in aqueous solution: a review. J Photochem Photobiol A Chem 128:1–13CrossRefGoogle Scholar
  135. Maddigapu PR, Bedini A, Minero C, Maurino V, Vione D, Brigante M, Mailhot G, Sarakha M (2010) The pH-dependent photochemistry of anthraquinone-2-sulfonate. Photochem Photobiol Sci 9:323–330CrossRefGoogle Scholar
  136. Maddigapu PR, Minero C, Maurino V, Vione D, Brigante M, Charbouillot T, Sarakha M, Mailhot G (2011) Photoinduced and photosensitised reactions involving 1-nitronaphthalene and nitrite in aqueous solution. Photochem Photobiol Sci 10:601–609. doi:http:dxdoiorg/101039/C0PP00311E CrossRefGoogle Scholar
  137. Mageli OL, Kolczynski JR (1966) Organic peroxides. Ind Eng Chem 58:25–32CrossRefGoogle Scholar
  138. Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous solutions formation of hydroxyl radicals and hydrogen atoms. J Phys Chem 87:1369–1377CrossRefGoogle Scholar
  139. Mark G, Korth H-G, Schuchmann H-P, von Sonntag C (1996) The photochemistry of aqueous nitrate ion revisited. J Photochem Photobiol A Chem 101:89–103CrossRefGoogle Scholar
  140. Matykiewiczová N, Kurková R, Klánová J, Klán P (2007) Photolytically induced nitration and hydroxylation of organic aromatic compounds in the presence of nitrate or nitrite in ice. J Photochem Photobiol A Chem 187:24–32CrossRefGoogle Scholar
  141. Maurino V, Borghesi D, Vione D, Minero C (2008) Transformation of phenolic compounds upon UVA irradiation of anthraquinone-2-sulfonate. Photochem Photobiol Sci 7:321–327CrossRefGoogle Scholar
  142. McKnight DM, Kimball BA, Bencala KE (1988) Iron photoreduction and oxidation in an acidic mountain stream. Science 240:637–640CrossRefGoogle Scholar
  143. Meyerstein D, Treinin A (1961) Absorption spectra of NO3 in solution. Tram Faraday Soc 57:2104–2112CrossRefGoogle Scholar
  144. Micinski E, Ball LA, Zafiriou OC (1993) Photochemical oxygen activation: Superoxide radical detection and production rates in the eastern Caribbean. J Geophys Res Oceans 98(C2):2299–2306Google Scholar
  145. Mill T, Hendry DG, Richardson H (1980) Free-radical oxidants in natural waters. Science 207:886–887CrossRefGoogle Scholar
  146. Miller PL, Chin YP (2002) Photoinduced degradation of carbaryl in wetland surface water. J Agric Food Chem 50:6758–6765CrossRefGoogle Scholar
  147. Miller DM, Buettner GR, Aust SD (1990) Transition metals as a catalysts of “autoxidation” reactions. Free Radic Biol Med 8:95–108CrossRefGoogle Scholar
  148. Miller WL, King DW, Lin J, Kester DR (1995) Photochemical redox cycling of iron in coastal seawater. Mar Chem 50:63–77CrossRefGoogle Scholar
  149. Miller WL, Moran MA, Sheldon WM, Zepp RG, Opsahl S (2002) Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts. Limnol Oceanogr 47:343–352CrossRefGoogle Scholar
  150. Millero FJ, Sotolongo S (1989) The oxidation of Fe(II) with H2O2 in seawater. Geochim Cosmochim Acta 53:1867–1873CrossRefGoogle Scholar
  151. Millington KR, Maurdev G (2004) The generation of superoxide and hydrogen peroxide by exposure of fluorescent whitening agents to UVA radiation and its relevance to the rapid photoyellowing of whitened wool. J Photochem Photobiol A Chem 165:177–185CrossRefGoogle Scholar
  152. Minakata D, Li K, Westerhoff P, Crittenden J (2009) Development of a group contribution method to predict aqueous phase hydroxyl radical (HO) reaction rate constants. Environ Sci Technol 43:6220–6227CrossRefGoogle Scholar
  153. Minella M, Rogora M, Vione D, Maurino V, Minero C (2011) A model approach to assess the long-term trends of indirect photochemistry in lake water. The case of Lake Maggiore (NW Italy). Sci Total Environ 409:3463–3471CrossRefGoogle Scholar
  154. Moffett JW, Zika RG (1987a) Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ Sci Technol 21:804–810CrossRefGoogle Scholar
  155. Moffett JW, Zika RG (1987b) Photochemistry of a copper complexes in sea water In: Zika RG, Cooper WJ (eds) Photochemistry of environmental aquatic systems, ACS symposium Ser 327. American Chemical Society, Washington, pp 116–130Google Scholar
  156. Moore CA, Farmer CT, Zika RG (1993) Influence of the Orinoko River on hydrogen peroxide distribution and production in the Eastern Caribean. J Geophys Res 98(C2):2289–2298Google Scholar
  157. Mopper K, Kieber DJ (2000) Marine photochemistry and its impact on carbon cycling. In: de Mora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp 101–129Google Scholar
  158. Mopper K, Zhou X (1990) Hydroxyl radical photoproduction in the sea and its potential impact on marine processes. Science 250:661–664CrossRefGoogle Scholar
  159. Moran MA, Zepp RG (1997) Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr 42:1307–1316CrossRefGoogle Scholar
  160. Moran MA Jr, Sheldon WM, Zepp RG (2000) Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol Oceanogr 45:1254–1264CrossRefGoogle Scholar
  161. Morse DE, Duncan H, Hooker N, Morse A (1977) Hydrogen peroxide induces spawning in mollusks, with activation of prostaglandin endoperoxide synthetase. Science 196:298–300CrossRefGoogle Scholar
  162. Mostofa KMG, Sakugawa H (2009) Spatial and temporal variations and factors controlling the concentrations of hydrogen peroxide and organic peroxides in rivers. Environ Chem 6:524–534CrossRefGoogle Scholar
  163. Mostofa KMG, Honda Y, Sakugawa H (2005) Dynamics and optical nature of fluorescent dissolved organic matter in river waters in Hiroshima prefecture Japan. Geochem J 39:257–271CrossRefGoogle Scholar
  164. Mostofa KMG, Yoshioka T, Konohira E, Tanoue E (2007) Photodegradation of fluorescent dissolved organic matters in river waters. Geochem J 41:323–331CrossRefGoogle Scholar
  165. Mostofa KMG, Wu FC, Yoshioka T, Sakugawa H, Tanoue E (2009a) Dissolved organic matter in the aquatic environments. In: Wu FC, Xing B (eds) Natural organic matter and its significance in the environment. Science Press, Beijing, pp 3–66Google Scholar
  166. Mostofa KMG, Liu CQ, Wu FC, Fu PQ, Ying WL, Yuan J (2009b) Overview of key biogeochemical functions in lake ecosystem: impacts of organic matter pollution and global warming keynote speech. In: Proceedings of the 13th world lake conference Wuhan, China, 1–5 Nov 2009, pp 59–60Google Scholar
  167. Mostofa KMG, Wu FC, Liu CQ, Yoshioka T, Sakugawa H, Tanoue E (2011) Photochemical, microbial and metal complexation behavior of fluorescent dissolved organic matter in the aquatic environments (Invited review). Geochem J 45:235–254Google Scholar
  168. Mulazzani QG, D’Angelantonio M, Venturi M, Hoffmann MZ, Rodgers MA (1986) Interaction of formate and oxalate ions with radiation-generated radicals in aqueous solution Methylviologen as a mechanistic probe. J Phys Chem 90:5352–5437CrossRefGoogle Scholar
  169. Muñoz I, Rieradevall J, Torrades F, Peral J, Dome`nech X (2006a) Environmental assessment of different advanced oxidation processes applied to a bleaching kraft mill effluent. Chemosphere 62:9–16CrossRefGoogle Scholar
  170. Muñoz I, Rieradevall J, Torrades F, Peral J, Dome`nech X (2006b) Environmental assessment of different advanced oxidation processes applied to a bleaching kraft mill effluent. Chemosphere 62:9–16CrossRefGoogle Scholar
  171. Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. Marcel Dekker, New York, pp 299–305Google Scholar
  172. Nakatani N, Miyake T, Chiwa M, Hashimoto M, Arakaki T, Sakugawa H (2001) Photochemical formation of OH radicals in dew formed on the pine needles at Mt Gokurakuji. Water Air Soil Pollut 130:397–402CrossRefGoogle Scholar
  173. Nakatani N, Hashimoto N, Sakugawa H (2004) An evaluation of hydroxyl radical formation in river water and the potential for photodegradation of bisphenol A. In: Hill RJ, Leventhal J, Aizenshtat Z, Baedecker MJ, Claypool G, Eganhouse R, Goldhaber M, Peters K (eds) The geochemical society special publication series 9, Geochemical investigations in earth and space science: a tribute to Isaac R Kaplan. Elsevier, Amsterdam, pp 233–242Google Scholar
  174. Nakatani N, Ueda M, Shindo H, Takeda K, Sakugawa H (2007) Contribution of the photo-Fenton reaction to hydroxyl radical formation rates in river and rain water samples. Anal Sci 23:1137–1142CrossRefGoogle Scholar
  175. Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17:1027–1284Google Scholar
  176. Nogueira RP, Guimaraes JR (2000) Photodegradation of dichloroacetic acid and 2,4-dichlorophenol by ferrioxalate/H2O2 system. Water Res 34:895–901CrossRefGoogle Scholar
  177. Oda T, Akaike T, Sato K, Ishimatsu A, Takeshita S, Muramatsu T, Maeda H (1992) Hydroxyl radical generation by red tide algae. Arch Biochem Biophys 294:38–43CrossRefGoogle Scholar
  178. Ollis DF, Pellizetti E, Serpone N (1991) Photocatalytic destruction of water contaminants. Environ Sci Technol 25:1522–1529CrossRefGoogle Scholar
  179. Osburn CL, O’Sullivan DW, Boyd TJ (2009) Increases in the longwave photobleaching of chromophoric dissolved organic matter in coastal waters. Limnol Oceanogr 54:145–159CrossRefGoogle Scholar
  180. Page SE, Arnold WA, McNeill K (2011) Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. Environ Sci Technol 45:2818–2825CrossRefGoogle Scholar
  181. Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome C oxidase activity and on the cardilipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326CrossRefGoogle Scholar
  182. Petasne RG, Zika RG (1987) Fate of superoxide in coastal sea water. Nature 325:516–518CrossRefGoogle Scholar
  183. Pham AN, Waite TD (2008) Oxygenation of Fe(II) in natural waters revisited: Kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways. Geochim Cosmochim Acta 72:3616–3630CrossRefGoogle Scholar
  184. Pignatello JJ (1992) Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Technol 26:944–951CrossRefGoogle Scholar
  185. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84CrossRefGoogle Scholar
  186. Pleskov YV, Gurevich YY (1986) Semiconductor photoelectron chemistry. Consultants Bureau, New York, p 29Google Scholar
  187. Po HN, Sutin N (1968) The stability constant of the monochloro complex of iron (II). Inorg Chem 7:621–624CrossRefGoogle Scholar
  188. Pochon A, Vaughan PP, Gan DQ, Vath P, Blough NV, Falvey DE (2002) Photochemical oxidation of water by 2-methyl-1,4-benzoquinone: evidence against the formation of free hydroxyl radical. J Phys Chem A 106:2889–2894CrossRefGoogle Scholar
  189. Pozdnyakov IP, Glebov EM, Plyusnin VF, Grivin VP, Ivanov YV, Vorobyev DY, Bazhin NM (2000) Hydroxyl radical formation upon photolysis of the Fe(OH)2+ complex in aqueous solution. Mendeleev Commun 10:185–186CrossRefGoogle Scholar
  190. Prousek J (1996) Advanced oxidation processes for water treatment photochemical processes. Chem Listy 90:307–315Google Scholar
  191. Pullin MJ, Bertilsson S, Goldstone JV, Voelker BM (2004) Effects of sunlight and hydroxyl radical on dissolved organic matter: bacterial growth efficiency and production of carboxylic acids and other substrates. Limnol Oceanogr 49:2011–2022CrossRefGoogle Scholar
  192. Qian J, Mopper K, Kieber DJ (2001) Photochemical production of the hydroxyl radical in Antarctic waters. Deep-Sea Res I 48:741–759CrossRefGoogle Scholar
  193. Radtke K, Byrnes RW, Kerrigan P, Antholine WE, Petering DH (1992) Requirement of endogenous iron for cytotoxicity caused by hydrogen peroxide in euglena gracilis. Mar Environ Res 34:339–343CrossRefGoogle Scholar
  194. Randall CE, Harvey VL, Manney GL, Orsolini Y, Codrescu M, Sioris C, Brohede S, Haley CS, Gordley LL, Zawdony JM, Russell JM (2005) Stratospheric effects of energetic particle precipitation in 2003–2004. Geophys Res Lett LO5082 doi:101029/2004GL022003Google Scholar
  195. Rex M, Harris NRP, der Gathen P, Lehman R, Braathen GO, Reimer E, Beck A, Chipperfield MP, Alfier R, Allaart M, O’Conner F, Dier H, Dorokhov V, Fast H, Gil M, Kyro E, Litynska Z, Mikkelsen IB, Molyneux MG, Nakane H, Notholt J, Rummukainen M, Viatte P, Wenger J (1997) Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature 389:835–838Google Scholar
  196. Ross AB, Mallard WG, Helman WP, Buxton, Huie RE, Neta P (1994) NDRL-NIST Solution Kinetics Database: -Ver 20. National Institute for Standards and Technology, GaithersburgGoogle Scholar
  197. Rossetti GH, Albizzati ED, Alfano OM (2002) Decomposition of formic acid in a water solution employing the photo-Fenton reaction. Ind Eng Chem Res 41:1436–1444CrossRefGoogle Scholar
  198. Ruppert G, Bauer R, Heisler GJ (1993) The photo-Fenton reaction- an effective photochemical wastewater treatment process. J Photochem Photobiol A Chem 73:75–78CrossRefGoogle Scholar
  199. Rush JD, Bielski GHJ (1985) Pulse radiolytic studies of the reactions of HO2/O2-with Fe(II)/Fe(III) ions. The reactivity of HO2/O2-with ferric ions and its implications on the occurrence of the Haber-Weiss reaction. J Phys Chem 89:5062–5066CrossRefGoogle Scholar
  200. Russi H, Kotzias D, Korte F (1982) Photoinduzierte hydroxylierungsreaktionen organischer chemikalien in naturlichen gewassern: nitrate als potentielle OH-radikalquellen. Chemosphere 11:1041–1048CrossRefGoogle Scholar
  201. Safazadeh-Amiri A, Bolton JR, Cater SR (1996) Ferrioxalate-mediated solar degradation of organic contaminants in water. Sol Energy 56:439–443CrossRefGoogle Scholar
  202. Safazadeh-Amiri A, Bolton JR, Cater SR (1997) Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Res 31:2079–2085Google Scholar
  203. Sakugawa H, Kaplan IR, Tsai W, Cohen Y (1990) Atmospheric hydrogen peroxide. Environ Sci Technol 24:1452–1462CrossRefGoogle Scholar
  204. Saquib M, Tariq MA, Haque MM, Muneer M (2008) Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process. J Environ Manag 88:300–306CrossRefGoogle Scholar
  205. Scarpa M, Stevanato R, Viglino P, Rigo A (1983) Superoxide ion as active intermediate in the autooxidation of ascorbate by molecular oxygen. J Biol Chem 258:6695–6697Google Scholar
  206. Schiavello M (1987) Basic concepts in photocatalysis. In: Schiavello M (ed) Photocatalysis and environmental trends and applications. Kluwer Academic Publishers, The Netherlands, pp 351–360Google Scholar
  207. Schuchmann MN, Von Sonntag C (1979) Hydroxyl radical-induced oxidation of 2-methyl-2-propanol in oxygenated aqueous solution: a product and pulse radiolysis study. J Phys Chem 83:780–784CrossRefGoogle Scholar
  208. Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley, New York, pp 436–484Google Scholar
  209. Sedlak DL, Hoigné J (1993) The role of copper and oxalate in the redox cycling of iron in atmospheric waters. Atmos Environ 27A:2173–2185Google Scholar
  210. Senesi N (1990) Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals Part II The fluorescence spectroscopy approach. Anal Chim Acta 232:77–106CrossRefGoogle Scholar
  211. Serpone N, Pelizzetti E (1989) Photocatalysis: fundamentals and applications. Wiley, New York, p 650Google Scholar
  212. Shuali U, Ottolenghi M, Rabani J, Yelin Z (1969) On photochemistry of aqueous nitrate solutions excited in 195-nm band. J Phys Chem 73:3445–3451CrossRefGoogle Scholar
  213. Skinner JF, Glasel A, Hsu L-C, Funt BL (1980) Rotating ring disk electrode study of the hydrogen peroxide oxidation of Fe(II) and Cu(I) in hydrochloric acid. J Electrochem Soc 127:315–324CrossRefGoogle Scholar
  214. Song RG, Westerhoff P, Minear RA, Amy GL (1996) Interaction between bromine and natural organic matter. In: Minear RA, Amy GL (eds) Water disinfection and natural organic matter. American Chemical Society, Washington, pp 298–321Google Scholar
  215. Southworth BA, Voelker BM (2003) Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid. Environ Sci Technol 37:1130–1136CrossRefGoogle Scholar
  216. Staehelin J, Hoigné J (1985) Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ Sci Technol 19:1206–1213CrossRefGoogle Scholar
  217. Strehlow H, Wagner I (1982) Flash photolysis of nitrite ions in aqueous solutions. Z Phys Chem Neue Folge 132:151–160CrossRefGoogle Scholar
  218. Strickler SJ, Kasha M (1963) Solvent effects on the electronic absorption spectrum of nitrite ion. J Am Chem Soc 85:2899–2901CrossRefGoogle Scholar
  219. Sun L, Bolton JR (1996) Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J Phys Chem 100:4127–4134CrossRefGoogle Scholar
  220. Sun Y, Pignatello J (1993) Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV. Environ Sci Technol 27:304–310CrossRefGoogle Scholar
  221. Sun B, Sato M, Sid Clements J (1997) Optical study of active species produced by a pulsed streamer corona discharge in water. J Electrostat 39(3):189–202Google Scholar
  222. Sur B, Rolle M, Minero C, Maurino V, Vione D, Brigante M, Mailhot G (2011) Formation of hydroxyl radicals by irradiated 1-nitronaphthalene (1NN): oxidation of hydroxyl ions and water by the 1NN triplet state. Photochem Photobiol Sci 10:1817–1824CrossRefGoogle Scholar
  223. Sychev AY, Isak VG (1995) Iron compounds and the mechanisms of the homogeneous catalysis of the activation of O2 and H2O2 and of the oxidation of organic substrates. Russ Chem Rev 64:1105–1129CrossRefGoogle Scholar
  224. Takahashi N, Nakai T, Satoh Y, Katoh Y (1995) Ozonolysis of humic acid and its effect on decoloration and biodegradability. Ozone Sci Eng 17:511–525CrossRefGoogle Scholar
  225. Takeda K, Takedoi H, Yamaji S, Ohta K, Sakugawa H (2004) Determination of hydroxyl radical photoproduction rates in natural waters. Anal Sci 20:153–158CrossRefGoogle Scholar
  226. Taylor RC, Cross PC (1949) Light absorption of aqueous hydrogen peroxide solutions in the near ultraviolet region. J Am Chem Soc 71:2266–2268CrossRefGoogle Scholar
  227. Torrents A, Anderson BG, Bilboulian S, Johnson WE, Hapeman CJ (1997) Atrazine photolysis: mechanistic investigations of direct and nitrate mediated hydroxy radical processes and the influence of dissolved organic carbon from the Chesapeake Bay. Environ Sci Technol 31:1476–1482CrossRefGoogle Scholar
  228. Tossell JA (2005) Calculation of the interaction of bicarbonate ion with arsenites in aqueous solution and with the surfaces of Al hydroxide minerals. ACS Symp Ser, Chapter 9, 915:118–130Google Scholar
  229. Tranvik LJ (1992) Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229:107–114CrossRefGoogle Scholar
  230. Treinin A, Hayon E (1970) Absorption spectra and reaction kinetics of NO2, N2O3, and N2O4 in aqueous solution. J Am Chem Soc 92:5821–5828CrossRefGoogle Scholar
  231. Tseng JM, Haung CP (1991) Removal of chlorophenols from water by photocatalytic oxidation. Water Sci Technol 23:377–387Google Scholar
  232. Ullah SS, Khan MGM, Rahman ABMS (1998) Photocatalytic decomposition of phenols by titanium dioxide under sunlight and UV. J Bang Acad Sci 22:29–37Google Scholar
  233. Valentine JS (1973) The dioxygen ligand in mononuclear group VIII transition metal complexes. Chem Rev 73:235–345CrossRefGoogle Scholar
  234. Vaughn PP, Blough NV (1998) Photochemical formation of hydroxyl radical by constituents of natural waters. Environ Sci Technol 32:2947–2953CrossRefGoogle Scholar
  235. Vel Leitner NK, Dore M (1996) Hydroxyl radical induced decomposition of aliphatic acids in oxygenated and deoxygenated aqueous solutions. J Photochem Photobiol A Chem 99:137–143CrossRefGoogle Scholar
  236. Venkatadri R, Peters R (1993) Chemical oxidation technologies. Hazard Waste Hazard Mater 10:107–149CrossRefGoogle Scholar
  237. Vermilyea AW, Voelker BM (2009) Photo-Fenton reaction at near neutral pH. Environ Sci Technol 43:6927–6933CrossRefGoogle Scholar
  238. Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem 15:785–790CrossRefGoogle Scholar
  239. Vione D, Maurino V, Minero C, Pelizzetti E (2001a) Phenol photonitration upon UV irradiation of nitrite in aqueous solution II: effects of pH and TiO2. Chemosphere 45:903–910CrossRefGoogle Scholar
  240. Vione D, Maurino V, Minero C, Pelizzetti E (2001b) Phenol photonitration upon UV irradiation of nitrite in aqueous solution II: effects of pH and TiO2. Chemosphere 45:903–910CrossRefGoogle Scholar
  241. Vione D, Maurino V, Minero C, Vincenti M, Pelizzetti E (2003a) Aromatic photonitration in homogeneous and heterogeneous aqueous systems. Environ Sci Pollut Res 10:321–324CrossRefGoogle Scholar
  242. Vione D, Maurino V, Minero C, Borghesi D, Lucchiari M, Pelizzetti E (2003b) New processes in the environmental chemistry of nitrite 2 the role of hydrogen peroxide. Environ Sci Technol 37:4635–4641CrossRefGoogle Scholar
  243. Vione D, Merlo F, Maurino V, Minero C (2004a) Effect of humic acids on the fenton degradation of phenol. Environ Chem Lett 2:129–133CrossRefGoogle Scholar
  244. Vione D, Maurino V, Pelizzetti E, Minero C (2004b) Phenol photonitration and photonitrosation upon nitrite photolysis in basic solution. Int J Environ Anal Chem 84:493–504CrossRefGoogle Scholar
  245. Vione D, Falletti G, Maurino V, Minero C, Pelizzetti E, Malandrino M, Ajassa R, Olariu R-I, Arsene C (2006) Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ Sci Technol 40:3775–3781CrossRefGoogle Scholar
  246. Vione D, Maurino V, Cucu Man S, Khanra S, Arsene C, Olariu RI, Minero C (2008) Formation of organobrominated compounds in the presence of bromide under simulated atmospheric aerosol conditions. ChemSusChem 1:197–204Google Scholar
  247. Vione D, Khanra S, Man SC, Maddigapu PR, Das R, Arsene C, Olariu RI, Maurino V, Minero C (2009a) Inhibition vs enhancement of the nitrate-induced phototransformation of organic substrates by the OH scavengers bicarbonate and carbonate. Water Res 43:4718–4728CrossRefGoogle Scholar
  248. Vione D, Maurino V, Minero C, Carlotti ME, Chiron S, Barbati S (2009b) Modelling the occurrence and reactivity of the carbonate radical in surface freshwater. Comptes Rendus Chimie 12:865–871CrossRefGoogle Scholar
  249. Vione D, Lauri V, Minero C, Maurino V, Malandrino M, Carlotti ME, Olariu RI, Arsene C (2009c) Photostability and photolability of dissolved organic matter upon irradiation of natural water samples under simulated sunlight. Aquat Sci 71:34–45CrossRefGoogle Scholar
  250. Vione D, Casanova I, Minero C, Duncianu M, Olariu RI, Arsene C (2009d) Assessing the potentiality of Romanian surface waters to produce hydroxyl and nitrite radicals. Revista De Chimie 60:123–126Google Scholar
  251. Vione D, Ponzo M, Bagnus D, Maurino V, Minero C, Carlotti ME (2010) Comparison of different probe molecules for the quantification of hydroxyl raidcals in aqueous solution. Environ Chem Lett 8:95–100CrossRefGoogle Scholar
  252. Voelker BM, Sulzberger B (1996) Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ Sci Technol 30:1106–1114CrossRefGoogle Scholar
  253. Voelker BM, Morel FMM, Sulzberger B (1997) Iron redox cycling in surface waters: effects of humic substances and light. Environ Sci Technol 31:1004–1011CrossRefGoogle Scholar
  254. Voelker BM, Sedlak DL, Zafiriou OC (2000) Chemistry of superoxide radical in seawater: Reactions with organic Cu complexes. Environ Sci Technol 34:1036–1042CrossRefGoogle Scholar
  255. Volman DH, Chen JC (1959) The photochemical decomposition of hydrogen peroxide in aqueous solutions of allyl alcohol at 2537 A. J Am Chem Soc 81:4141–4144CrossRefGoogle Scholar
  256. von Gunten U, Oliveras Y (1997) Kinetics of the reaction between hydrogen peroxide and hypobromous acid: implication on water treatment and natural systems. Water Res 31:900–906CrossRefGoogle Scholar
  257. von Sonntag C (2006) Free-radical-induced DNA damage and its repair a chemical perspective. Springer Verlag, Berlin, pp 359–482Google Scholar
  258. von Sonntag C (2007) The basics of oxidants in water treatment Part A: OH radical reactions. Water Sci Technol 55:19–23Google Scholar
  259. von Sonntag C, Mark G, Mertens R, Schuchmann MN, Schuchmann H-P (1993) UV-radiation and/or oxidants in water pollution control. J Water Supply Res Technol Aquat 42:201–211Google Scholar
  260. Wagner I, Strehlow H, Busse G (1980) Flash-photolysis of nitrate ions in aqueous-solution. Z Phys Chem 123:1–33Google Scholar
  261. Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131CrossRefGoogle Scholar
  262. Walling C, Weil T (1974) The ferric ion catalyzed decomposition of hydrogen peroxide in perchloric acid solution. Int J Chem Kinet 6:507–516CrossRefGoogle Scholar
  263. Wang GS, Liao CH, Wu FJ (2001) Photodegradation of humic acids in the presence of hydrogen peroxide. Chemosphere 42:379–387CrossRefGoogle Scholar
  264. Wang Z, Chen X, Ji H, Ma W, Chen C, Zhao J (2010) Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. Environ Sci Technol 44:263–268CrossRefGoogle Scholar
  265. Warneck P, Wurzinger C (1988) Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution. J Phys Chem 92:6278–6283CrossRefGoogle Scholar
  266. Wells CF, Salam MA (1967) Complex formation between Fe(II) and inorganic anions. Trans Faraday Soc 63:620–629Google Scholar
  267. Wells CF, Salam MA (1968) The effect of pH on the kinetics of the reaction of iron (II) with hydrogen peroxide in perchlorate media. J Chem Soc (A):24–29Google Scholar
  268. Westerhoff P, Aiken G, Army G, Debroux J (1999) Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res 33:2265–2276CrossRefGoogle Scholar
  269. Westerhoff P, Mezyk SP, Cooper WJ, Minakata D (2007) Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates. Environ Sci Technol 41:4610–4646CrossRefGoogle Scholar
  270. White EM, Vaughan PP, Zepp RG (2003) Role of photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of coloured dissolved organic matter in a coastal river of the southern United States. Aquat Sci 65:402–414CrossRefGoogle Scholar
  271. Williams NH, Yandell JK (1982) Outer-sphere electron-transfer reaction of ascorbate anions. Aust J Chem 35:1133–1144CrossRefGoogle Scholar
  272. Winterbourn CC (1993) Superoxide as an intracellular radical sink. Free Radic Biol Med 14:85–90CrossRefGoogle Scholar
  273. Wu F, Deng N, Zuo Y (1999) Discoloration of dye solutions induced by solar photolysis of ferrioxalate in aqueous solutions. Chemosphere 39:2079–2085CrossRefGoogle Scholar
  274. Xu T, Cai Y, Mezyk SP, O’Shea KE (2005) The roles of hydroxyl radical, superoxide anion radical, and hydrogen peroxide in the oxidation of arsenite by ultrasonic irradiation advances in arsenic research. American Chemical Society, Washington, pp 333–343Google Scholar
  275. You J-L, Fong FK (1986) Superoxide photogeneration by chlorophyll A in water/acetone Electron spin resonance studies of radical intermediates in chlorophyll A photoreaction in vitro. Biochem Biophys Res Commun 139:1124–1129CrossRefGoogle Scholar
  276. Zafiriou OC (1974) Sources and reactions of OH and daughter radicals in seawater. J Geophys Res 79:4491–4497CrossRefGoogle Scholar
  277. Zafiriou OC (1990) Chemistry of superoxide ion-radical (O2-) in seawater: I pK*asw (HOO) and uncatalyzed dismutation kinetics studies by pulse radiolysis. Mar Chem 30:31–43CrossRefGoogle Scholar
  278. Zafiriou OC, Bonneau R (1987) Wavelength-dependent quantum yield of OH radical formation from photolysis of nitrite ion in water. Photochem Photobiol 15:723–727CrossRefGoogle Scholar
  279. Zafiriou OC, Dister B (1991) Photochemical free-radical production-rates-Guld of marine and Woods-Hole Miami transect. J Geophys Res Oceans 96(C3):4939–4945Google Scholar
  280. Zafiriou OC, True MB (1979a) Nitrite photolysis in seawater by sunlight. Mar Chem 8:9–32CrossRefGoogle Scholar
  281. Zafiriou OC, True MB (1979b) Nitrate photolysis in seawater by sunlight. Mar Chem 8:33–42CrossRefGoogle Scholar
  282. Zafiriou OC, Joussot-Dubien J, Zepp RG, Zika RG (1984) Photochemistry of natural waters. Environ Sci Technol 18:356A–371AGoogle Scholar
  283. Zafiriou OC, True Mary B, Hayon E (1987) Consequences of OH radical reaction in sea water: formation and decay of Br2- ion radical, Photochemistry of environmental aquatic systems. American Chemical Society, Washington, pp 89–105Google Scholar
  284. Zafiriou OC, True Mary B, Hayon E (1987) Consequences of OH radical reaction in sea water: formation and decay of Br2− ion radical, Photochemistry of environmental aquatic systems. American Chemical Society, Washington, pp 89–105Google Scholar
  285. Zafiriou OC, Voelker BM, Sedlak DL (1998) Chemistry of the superoxide radical (O2) in seawater: Reactions with inorganic copper complexes. J Phys Chem A 102:5693–5700CrossRefGoogle Scholar
  286. Zang L-Y, Stone K, Pryor WA (1995) Detection of free radicals in aqueous extracts of cigarette tar by electron spin resonance. Free Radic Biol Med 19(2):161–167Google Scholar
  287. Zellner R, Exner M, Herrmann H (1990) Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H2O2 at 308 and 351 nm in the temperature range 278–353 K. J Atmos Chem 10:411–425CrossRefGoogle Scholar
  288. Zepp RG (2002) Solar ultraviolet radiation and aquatic carbon, nitrogen, sulfur and metals cycles In: Helbling EW, Zagarese H (eds) UV effects in aquatic organisms and ecosystems. Royal Society of Chemistry, Cambridge, pp 137–183Google Scholar
  289. Zepp RG, Hoigné J, Bader H (1987a) Nitrate-induced photooxidation of trace organic chemicals in water. Environ Sci Technol 21:443–450CrossRefGoogle Scholar
  290. Zepp RG, Skurlatov YI, Pierce JT (1987) Algal-induced decay and formation of hydrogen peroxide in water: its possible role in oxidation of anilines by algae. In: Zika RG, Cooper WJ (eds) Photochemistry of environmental aquatic systems, ACS Symp Ser 327. American Chemical Society, Washington, pp 213–224Google Scholar
  291. Zepp RG, Faust BC, Hoigné J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the Photo-Fenton reaction. Environ Sci Technol 26:313–319CrossRefGoogle Scholar
  292. Zhao B, Li X, He R, Cheng S, Wenjuan X (1989) Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biochem Biophys 14:175–185Google Scholar
  293. Zhou X, Mopper K (1990) Determination of photolytically produced hydroxyl radicals in seawater and freshwater. Mar Chem 30:71–88CrossRefGoogle Scholar
  294. Zika RG, Milne PJ, Zafiriou OC (1993) Photochemical studies of the eastern Caribbean—an introductory overview. J Geophys Res Oceans 98(C2):2223–2232Google Scholar
  295. Zimbron JA, Reardon KF (2005) Hydroxyl free radical reactivity toward aqueous chlorinated phenols. Water Res 39:865–869CrossRefGoogle Scholar
  296. Zuo Y, Hoigné J (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ Sci Technol 26:1014–1022CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Khan M. G. Mostofa
    • 1
  • Cong-qiang Liu
    • 1
  • Hiroshi Sakugawa
    • 2
  • Davide Vione
    • 3
    • 4
  • Daisuke Minakata
    • 5
  • M. Saquib
    • 6
  • M. Abdul Mottaleb
    • 7
  1. 1.State Key Laboratory of Environmental GeochemistryInstitute of Geochemistry, Chinese Academy of SciencesGuiyangChina
  2. 2.Department of Environmental Dynamics and ManagementGraduate School of Biosphere Science, Hiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Dipartimento di Chimica AnaliticaUniversity of TurinTurinItaly
  4. 4.Centro Interdipartimentale NatRiskGrugliascoItaly
  5. 5.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA
  6. 6.Department of ChemistryAligarh Muslim UniversityAligarhIndia
  7. 7.Department of Chemistry/Physics Northwest Missouri State UniversityCenter for Innovation and Entrepreneurship (CIE)MaryvilleUSA

Personalised recommendations