Ion Implantation

  • G. Langouche
  • Y. Yoshida


In this tutorial we describe the basic principles of the ion implantation technique and we demonstrate that emission Mössbauer spectroscopy is an extremely powerful technique to investigate the atomic and electronic configuration around implanted atoms. The physics of dilute atoms in materials, the final lattice sites and their chemical state as well as diffusion phenomena can be studied. We focus on the latest developments of implantation Mössbauer spectroscopy, where three accelerator facilities, i.e., Hahn-Meitner Institute Berlin, ISOLDE-CERN and RIKEN, have intensively been used for materials research in in-beam and on-line Mössbauer experiments immediately after implantation of the nuclear probes.


Isomer Shift Hyperfine Interaction Collision Cascade Atomic Jump Defect Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E.L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience (Wiley-VCH, New York, 2006)Google Scholar
  2. 2.
    Electron Microscope Google Scholar
  3. 3.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005Google Scholar
  4. 4.
    R.L. Mössbauer, Z. Physik, 151, 124 (1958)Google Scholar
  5. 5.
    R.L. Mössbauer, Naturwissenschaften, 45, 538 (1958)Google Scholar
  6. 6.
    R.L. Mössbauer, Z. Naturforsch. 14a, 211 (1959)Google Scholar
  7. 7.
    Hyperfine InteractionsGoogle Scholar
  8. 8.
    L.C. Feldman, J.W. Mayer (eds.), Fundamentals of Surface and Thin Film Analysis. (Appleton and Lange, New York, 1986)Google Scholar
  9. 9.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids ed. (Pergamon Press, New York, 1985);
  10. 10.
    G. Langouche, Hyperfine Interaction of Defects in Semiconductors (Elsevier, Amsterdam, 1992)Google Scholar
  11. 11.
    G. Langouche, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, G. Long, F. Grandjean (eds.), Vol. 3, (Plenum Press, New York and London, 1989), pp. 445–512Google Scholar
  12. 12.
    H. de Waard, S.A. Drentje, Phys. Lett. 20, 38 (1966)Google Scholar
  13. 13.
    G.L. Latshaw, Stanford University, PhD Thesis, 1971Google Scholar
  14. 14.
    L. Niesen, Hyperfine interact. 13, 65–88 (1983)Google Scholar
  15. 15.
    G. Weyer, Hyperfine Interact. 27, 249–262 (1986)Google Scholar
  16. 16.
    H. de Waard, Hyperfine Interact. 40, 31–48 (1988)Google Scholar
  17. 17.
    G. Langouche, Hyperfine Interact. 45, 199–216 (1989)Google Scholar
  18. 18.
    G. Langouche, Hyperfine Interact. 72, 217–228 (1992)Google Scholar
  19. 19.
    M. de Coster, H. Pollak, S. Amelinckx, in Proceedings of the 2nd International Conference on the Mössbauer Effect, D.M.J. Compton, A.H. Schoen (eds.) (Wiley, New York, 1962), p. 289Google Scholar
  20. 20.
    P.C. Norem, G.K. Wertheim, J. Phys. Chem. Solids 23, 1111 (1962)Google Scholar
  21. 21.
    G. Langouche, M. de Potter, I. Dézsi, M. Van Rossum, Radiat. Effect Lett. 67, 404 (1982)Google Scholar
  22. 22.
    J.A. Sawicki, B.D. Sawicka, Phys. Stat. Sol. b 86, K159 (1978)Google Scholar
  23. 23.
    G.L. Latshaw, P.B. Russell, S.S. Hanna, Hyperfine Interact. 8, 105–127 (1980)Google Scholar
  24. 24.
    J.A. Sawicka, B.D., Sawicki, J.A. Phys. Lett. A 64, 311 (1977)Google Scholar
  25. 25.
    G. Langouche, M. de Potter, Nucl. Instrum. Methods B 19/20, 322 (1987)Google Scholar
  26. 26.
    P. Schwalbach, S. Laubach, M. Hartick, E. Kankeleit, B. Keck, M. Menningen, R. Sielemann, Phys. Rev. Lett. 64, 1274 (1990)Google Scholar
  27. 27.
    G. Langouche, M. de Potter, D. Schroyen, Phys. Rev. Lett. 53, 1364 (1984)Google Scholar
  28. 28.
    W. Bergholz, Physica B 16, 312 (1983)Google Scholar
  29. 29.
    M. Menningen, R. Sieleman, G. Vogl, Y. Yoshida, K. Bonde-Nielsen, G. Weyer, Europhys. Lett. 3, 927–933 (1987)Google Scholar
  30. 30.
    A. Heiming, K.H. Steinmetzt, G. Vogl, Y. Yoshida, J. Phys. F: Met. Phys. 18, 1491–1503 (1988)Google Scholar
  31. 31.
    Y. Yoshida, M. Menningen, R. Sielemann, G. Vogl, G. Weyer, K. Schroeder, Phys. Rev. Lett. 61, 195 (1988)Google Scholar
  32. 32.
    Y. Yoshida, Hyperfine Interact. 47, 95–113 (1989)Google Scholar
  33. 33.
    R. Sielemann, Y. Yoshida, Hyperfine Interact. 68, 119–130 (1991)Google Scholar
  34. 34.
    B. Keck, R.Sielemann, Y. Yoshida, Phys. Rev.Lett. Google Scholar
  35. 35.
    D. Forkel-Wirth, ISOLDE laboratory portrait. Hyperfine Interact. 129 (2000)Google Scholar
  36. 36.
    G. Weyer, Hyperfine Interact. 129, 371–390 (2000)Google Scholar
  37. 37.
    G. Weyer, J.W. Petersen, S. Damgaard, H.L. Nielsen, Phys. Rev. Lett. 44, 155–157 (1980)Google Scholar
  38. 38.
    H.P. Gunnlaugsson, G. Weyer, M. Dietrich and the ISOLDE collaboration, M. Fanciulli, K. Bharuth-Ram, R. Sielemann, Appl. Phys. Lett. 80, 2657–2659 (2002)Google Scholar
  39. 39.
    Y. Kobayashi, Y. Yoshida et al., Hyperfine Interact. 126, 417 (2000)Google Scholar
  40. 40.
    Y. Yoshida, K. Kobayashi et al., Defect Diffus. Forum 194–199, 611 (2001)Google Scholar
  41. 41.
    Y. Yoshida; ALTECH 2003 Analytical and Diagnostic Techniques for Semiconductor Materials, Devices, and Processes, 479 (2003)Google Scholar
  42. 42.
    Y. Yoshida, Y. Kobayashi, K. Hayakawa, K. Yukihira, A. Yoshida, H. Ueno, F. Shimura, F. Ambe; Physica B, 376-377, 69 (2006)Google Scholar
  43. 43.
    Y. Yoshida, K. Suzuki, Y. Kobayashi, T. Nagatomo, Y. Akiyama, K. Yukihira, K. Hayakawa, H. Ueno, A. Yoshimi, D. Nagae, K. Asahi, G. Langouche, Hyperfine Interact. 204, 133–137 (2012)Google Scholar
  44. 44.
    A.A. Istratov, H. Hieslmair and E. R. Weber; Appl. Phys. A 69, 13 (1999)Google Scholar
  45. 45.
    S. K. Estreicher, M. Sanati, N. Gonzalez Szawacki, Phys. Rev. B, 77, 125214 (2008)Google Scholar
  46. 46.
    J. Kübler, A. E. Kumm, H. Overhof, P. Schwalbach, M. Hartick, E. Kankeleit, B. Keck, L.Wende, R.Sielemann, Z. Phys., B 92, 155 (1993)Google Scholar
  47. 47.
    Y. Yoshida, S. Horie, K. Niira, K. Fukui and K. Shirasawa; Physica B, 376–377, 227 (2006)Google Scholar
  48. 48.
    T. Diaz de la Rubia and G. H. ilmer, Phys. Rev.Lett., 74, 2507-2510 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Leuven, Institute of Nuclear and Radiation PhysicsLeuvenBelgium
  2. 2.Shizuoka Institute of Science and TechnologyFukuroi-cityJapan

Personalised recommendations