The Contribution of 57Fe Mössbauer Spectrometry to Investigate Magnetic Nanomaterials

  • Jean-Marc Greneche


Fe containing nanomaterials and nanoparticles are quite important because their unusual physical properties make them excellent candidates for different applications. 57Fe Mössbauer spectrometry appears as an excellent tool to provide structural and magnetic data through the hyperfine parameters. After a short definition of nanostructures and their main characteristics originated from confinement effects, we established the relevant features to understand nanoscale magnetism. Some examples have been thus selected to illustrate first how Mössbauer spectrometry contributes to understand the chemical, structural and magnetic nature of nanostructures and the role of surface and grain boundaries. Then, they also demonstrate also how the fitting procedure remains a delicate task to model the hyperfine structure and does require on the one hand large experimental data basis obtained from different techniques including structural, morphological and magnetic parameters and on the other hand materials with high knowledge and control of synthesis conditions.


Hyperfine Field Hyperfine Structure Quadrupolar Doublet Nanocrystalline Alloy High Energy Ball Milling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter reviews partially studies performed for the last 20 years at the NanoMagnetism and Numeric Modelling Group of the Institut des Molécules et Matériaux du Mans, UMR CNRS 6283 (ex Laboratoire de Physique de l’Etat Condensé UMR CNRS 6287). It is a sincere pleasure to thank first Prof N. Randrianantoandro, Dr N. Yaacoub, Dr Y. Labaye, Prof F. Calvayrac, Dr H. Guérault, Dr M. Grafouté and Dr B. Fongang for their respective significant contributions, and Dr A. Slawska-Waniewska, Dr I. Skorvanek, Prof M. Miglierini, Dr J. Degmova, Dr O. Crisan, Prof. J.M. Borrego, Prof. J. S. Blazquez, Dr D. Peddis, Prof G.A. Perez Alcazar, Dr J.F. Valderruten and Prof J. Restrepo during their respective stays at Le Mans. As mentioned in previous sections, the mutual collaboration with many chemistry groups requires large interactive communication to discuss results in order to optimize (nano)materials and to elaborate more complex (nano)architectures: Dr E. Tronc, Prof J.P. Jolivet, Prof C. Chanéac, Prof S. Ammar (Paris), G. Pourroy and S. Begin (Strasbourg).


  1. 1.
    G. Binnig, H. Rohrer, Scanning tunnelling microscopy. IBM J. Res. Dev. 30, 4 (1986)Google Scholar
  2. 2.
    G. Binnig, C.L. Quate, C. Gerber, Atom force microscope. Phys. Rev. Lett. 56, 930–933 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    G. Binnig, H. Rohrer, Scanning tunnelling microscopy—from birth to adolescence. Rev. Mod. Phys. 59, 615–625 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    G. Binnig, H. Rohrer, Scanning tunnelling microscopy. Surf. Sci. 126, 236–244 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Buckminsterfullerene. Nature 318, 162–163 (1985). C-60ADSCrossRefGoogle Scholar
  6. 6.
    W.W. Adams, R.H. Baughman, Richard E. Smalley (1943–2005)—Retrospective. Science 310, 5756 (2005)CrossRefGoogle Scholar
  7. 7.
    P. Grunberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Layered magnetic-structures—evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    M.N. Baibich, J.M. Broto, A. Fert, F.N. Vandau, F. Petroff, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001) Fe/(001) Cr Magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    L. Lutterotti, MAUD program, CPD, Newsletter (IUCr) No. 24. (2000), web site:
  10. 10.
    S. Morup, J. Dumesic, H. Topsoe, in Applications of Mössbauer Spectroscopy, ed. by R. Cohen. vol. 2 (Academic, New York, 1980), pp. 1–53Google Scholar
  11. 11.
    J.L. Dormann, Rev. Phys. Appl. 16, 275 (1981)CrossRefGoogle Scholar
  12. 12.
    S Morup, in Mössbauer Spectroscopy applied to Inorganic Chemistry, ed. by G.J. Long, vol 2 (Plenum Press, New York, 1987), p. 89Google Scholar
  13. 13.
    J.L. Dormann, D. Fiorani (eds.), Magnetic Properties of Fine Particles (North-Holland, Amsterdam, 1992)Google Scholar
  14. 14.
    E. Tronc, Nanoparticles. Nuovo Cimento D18, 163–180 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    J.L. Dormann, D. Fiorani, E. Tronc, Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 293 (1997)Google Scholar
  16. 16.
    J. Chappert, J. de Phys. C6(35), 71 (1974)Google Scholar
  17. 17.
    J. Chappert, J. Teillet, F. Varret, J. Magn. Magn. Mater. 11, 200 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Greneche, Noncollinear magnetic structures investigated by high-field Mössbauer spectrometry. Acta Physica Slovaca 45, 45–55 (1995)Google Scholar
  19. 19.
    J.M.D. Coey, P.W. Readman, New spin structure in an amorphous gel. Nature 246, 476–478 (1973)ADSCrossRefGoogle Scholar
  20. 20.
    S. Mørup, M.F. Hansen, Superparamagnetic Particles, in Handbook of Magnetism and Advanced Magnetic Materials. Novel Materials, vol. 4, ed. by H. Kronmüller, S. Parkin (Wiley, Chichester, 2007), pp. 2159–2176Google Scholar
  21. 21.
    S. Mørup, C. Frandsen, M.F. Hansen, Magnetic Properties of Nanoparticles, in The Oxford Handbook of Nanoscience and Technology: Materials, Structures, Properties and Characterization Techniques, ed. by A.V. Narlikar, Y.Y. Fu (Oxford University Press, Oxford, 2010)Google Scholar
  22. 22.
    S. Mørup, M.F. Hansen, C. Frandsen, Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 1, 182–190 (2010)CrossRefGoogle Scholar
  23. 23.
    S. Mørup, M.F. Hansen, C. Frandsen, Magnetic nanoparticles. Compr. Nanosci. Technol. 1, 437–491 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Frenkel, J. Doefman, Spontaneous and induced magnetization in ferromagnetic bodies. Nature 126, 274–275 (1930)ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 2000)Google Scholar
  26. 26.
    E. Thellier, Sur les propriétés de l’aimantation thermorémanente des terres cuites. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 213, 1019–1022 (1941)Google Scholar
  27. 27.
    L. Néel, Some theoretical aspects of rockmagnetism. Adv. Phys. 4, 191–243 (1955)ADSCrossRefGoogle Scholar
  28. 28.
    L. Néel, Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Annales de Géophysique 5, 99–136 (1949)Google Scholar
  29. 29.
    L. Néel, Influence des fluctuations thermiques sur l’aimantation de grains ferromagnétiques très fins. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 228, 664–666 (1949)Google Scholar
  30. 30.
    W.F. Brown Jr, Thermal fluctuations of a single domain particle. Phys. Rev. 130, 1677–1686 (1963)ADSCrossRefGoogle Scholar
  31. 31.
    A. Aharoni, Complete eigen-value spectrum for the nucleation in a ferromagnetic prolate spheroid. Phys. Rev. 131, 1478–1482 (1963)ADSCrossRefGoogle Scholar
  32. 32.
    J.L. Dormann, L. Bessais, D. Fiorani, A dynamic study of small interacting particles-superparamgnetic model and spin-glass laws. J. Phys. C Solid State Phys. 21, 2015–2034 (1988) ADSCrossRefGoogle Scholar
  33. 33.
    D. Fiorani, J.L. Dormann, R. Cherkaoui et al., Collective magnetic state in nanoparticles systems. J. Magn. Magn. Mater. 196–197, 143–147 (1999)CrossRefGoogle Scholar
  34. 34.
    S. Mørup, Superparamagnetism and spin glass ordering in magnetic nanocomposites. Europhys. Lett. 28, 671–676 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    J.M.D. Coey, Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971)ADSCrossRefGoogle Scholar
  36. 36.
    E. Tronc, P. Prené, J.P. Jolivet, J.L. Dormann, J.M. Greneche, Spin-canting in γ-Fe2O3 Nanoparticles. Hyperfine Interact. 112, 97–100 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    E. Tronc, A. Ezzir, R. Cherkaoui, C. Chanéac, M. Noguès, H. Kachkachi, D. Fiorani, A.M. Testa, J.M. Greneche, J.P. Jolivet, Surface-related properties of γ-Fe2O3 nanoparticles. J. Magn. Magn. Mater. 221, 63–79 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    E. Tronc, D. Fiorani, M. Noguès, A.M. Testa, F. Lucari, F. D’Orazio, J.M. Greneche, W. Wernsdorfer, N. Galvez, C. Chanéac, D. Mailly, M. Verdaguer, J.P. Jolivet, Surface effects in noninteracting and interacting γ-Fe2O3 nanoparticles. J. Magn. Magn. Mater. 262, 6–14 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    E. Tronc, M. Nogues, C. Chaneac, F. Lucari, F.D. Orazio, J.M. Greneche, J.P. Jolivet, D. Fiorani, A.M. Testa, Magnetic properties of γ-Fe2O3 dispersed particles: size and matrix effects. J. Magn. Magn. Mater. 272–276, 1474–1475 (2004)CrossRefGoogle Scholar
  40. 40.
    A. Slawska-Waniewska, P. Didukh, J.M. Greneche, P.C. Fannin, Mössbauer and magnetisation studies of CoFe2O4 particles in a magnetic fluid. J. Magn. Magn. Mater. 215–216, 227–230 (2000)CrossRefGoogle Scholar
  41. 41.
    T.J. Daou, S. Begin-Colin, J.M. Greneche, F. Thomas, A. Derory, P. Bernhardt, P. Legare, G. Pourroy, Phosphate adsorption properties of magnetite-based nanoparticles. Chem. Mater. 19, 4494–4505 (2007)CrossRefGoogle Scholar
  42. 42.
    T.J. Daou, G. Pourroy, S. Bégin-Colin, J.M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey, G. Rogez, Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem. Mater. 18, 4399–4404 (2006)CrossRefGoogle Scholar
  43. 43.
    T.J. Daou, J.M. Greneche, S.J. Lee, S. Lee, C. Lefevre, S. Bégin-Colin, G. Pourroy, Spin canting of maghemite studied by NMR and in-field Mössbauer spectrometry. J. Phys. Chem. C 114, 8794–8799 (2010)CrossRefGoogle Scholar
  44. 44.
    E. Lima Jr, E. De Biasi, M. Mansilla Vasquez, M.E. Saleta, F. Effenberg, L.M. Rossi, R. Cohen, H.R. Rechenberg, R.D. Zysler, Surface effects in the magnetic properties of crystalline 3 nm ferrite nanoparticles chemically synthesized. J. Appl. Phys. 108, 103919 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    E.C. Sousa, H.R. Rechenberg, J. Depeyrot, J.A. Gomes, R. Aquino, F.A. Tourinho, V. Dupuis, R. Perzynski, In-field Mössbauer study of disordered surface spins in core/shell ferrite nanoparticles. J. Appl. Phys. 106, 093901 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    A.T. Ngo, P. Bonville, M.P. Pileni, Spin canting and size effects in nanoparticles of nonstoichiometric cobalt ferrite. J. Appl. Phys. 89, 3370–3376 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    R.H. Kodama, A.E. Berkowitz, E.J. McNiff Jr, S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394 (1996)ADSCrossRefGoogle Scholar
  48. 48.
    R.H. Kodama, A.E. Berkowitz, E.J. McNiff Jr, S. Foner, Surface spin disorder in ferrite nanoparticles (invited). J. Appl. Phys. 81, 5552–5557 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    H. Kachkachi, A. Ezzir, M. Noguès, E. Tronc, Surface effects in nanoparticles: application to maghemite γ-Fe2O3. Eur. Phys. J. B 14, 681 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Labaye, O. Crisan, L. Berger, J.M. Greneche, J.M.D. Coey, Surface anisotropy in ferromagnetic nanoparticles. J. Appl. Phys. 91, 8715–8717 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    J. Restrepo, Y. Labaye, J.M. Greneche, Surface anisotropy in maghemite nanoparticles. Phys. B 384, 221–223 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    L. Néel, Propriétés magnétiques des ferrites-ferrimagnétisme et antiferromagnétisme. Annales de Physique 3, 137–198 (1948)Google Scholar
  54. 54.
    E.J.W. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327 (1939)ADSCrossRefGoogle Scholar
  55. 55.
    E.J.W. Verwey, E.L. Heilmann, Physical properties and cation arrangement of oxides with spinel structures 1: cation arrangement in spinels. J. Chem. Phys. 15, 174–180 (1947)ADSCrossRefGoogle Scholar
  56. 56.
    E.J.W. Verwey, P.W. Haayman, F.C. Romeijan, Physical properties and cation arrangement of oxides with spinel structures 2: electronic conductivity. J. Chem. Phys. 15, 181 (1947)ADSCrossRefGoogle Scholar
  57. 57.
    I. Leonov, A.N. Yaresko, On the Verwey charge ordering in magnetite. J. Phys. Condens. Matter 19, 021001 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    L. Häggström, H. Annersten, T. Ericsson, R. Wäppling, W. Karner, S. Bjarman, Magnetic dipolar and electric quadrupolar effects on the Mössbauer spectra of magnetite above the Verwey transition. Hyp. Interact. 5, 201–214 (1978)CrossRefGoogle Scholar
  59. 59.
    A.C. Doriguetto, N.G. Fernandes, A.I.C. Persiano, E. Nunes Filho, J.M. Greneche, J.D. Fabris, Characterization of a natural magnetite. Phys. Chem. Miner. 30, 249–255 (2003)ADSGoogle Scholar
  60. 60.
    Ö. Helgason, J.-M. Greneche, F.J. Berry, S. Mørup, F. Mosselmans, Tin- and Titanium-doped γ-Fe2O3 (Maghemite). J. Phys. Condens. Matter 13, 10785–10797 (2001)ADSCrossRefGoogle Scholar
  61. 61.
    R.J. Armstron, A.H. Morrish, G.A. Sawatzky, Mössbauer study of ferric ions in tetrahedral and octahedral sites of a spinel. Phys. Lett. 23, 414 (1966)ADSCrossRefGoogle Scholar
  62. 62.
    G.A. Sawatzky, F. Van Der Woude, A.H. Morrish, Cation distributions in octahedral and tetrahedral sites of the Ferrimagnetic Spinel CoFe2O4. J. Appl. Phys. 39, 1204–1206 (1968)ADSCrossRefGoogle Scholar
  63. 63.
    G.A. Sawatzky, F. Van Der Woude, A.H. Morrish, Mössbauer study of several ferrimagnetic spinels. Phys. Rev. 187, 747–757 (1969)ADSCrossRefGoogle Scholar
  64. 64.
    L.K. Leung, B.J. Evans, A.H. Morrish, Low temperature Mössbauer study of a Nickel-Zinc ferrite ZnXNi1-XFe2O4. Phys. Rev. B 8, 29–43 (1973)ADSCrossRefGoogle Scholar
  65. 65.
    A.H. Morrish, P.E. Clark, High-Field Mössbauer study of manganese-zinc ferrites. Phys. Rev. B 11, 278–286 (1975)ADSCrossRefGoogle Scholar
  66. 66.
    J.S. Salazar, L. Perez, O. de Abril, L.T. Phuoc, D. Ihiawakrim, M. Vazquez, J.M. Greneche, S. Begin-Colin, G. Pourroy, Magnetic Iron Oxide nanoparticles in 10–40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem. Mater. 23, 1379–1386 (2011)CrossRefGoogle Scholar
  67. 67.
    T.J. Daou, G. Pourroy, J.M. Greneche, A. Bertin, D. Felder-Flesch, S. Begin-Colin, Water soluble dendronized iron oxide nanoparticles. Dalton Trans. 4442–4449 (2009)Google Scholar
  68. 68.
    D. Faivre, L.H. Böttger, B.F. Matzanke, D. Schüler, Intracellular magnetite biomineralization in Bacteria proceeds by a distinct pathway involving membrane-bound Ferritin and an Iron(II) Species. Angew. Chem. Int. Ed. 46, 8495–8499 (2007)CrossRefGoogle Scholar
  69. 69.
    G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)ADSCrossRefGoogle Scholar
  70. 70.
    I. Dézsi, F. Cs, Á. Gombkötő, I. Szűcs, J. Gubicza, T. Ungár, Phase transition in nanomagnetite. J. Appl. Phys. 103, 104312 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    S. Chkoundali, S. Ammar, N. Jouini, F. Fievet, P. Molinié, M. Danot, F. Villain, J.M. Greneche, Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties. J. Phys. Condens. Matter 16, 4357–4372 (2004)ADSCrossRefGoogle Scholar
  72. 72.
    S. Ammar, N. Jouini, F. Fiévet, Z. Beji, L. Smiri, P. Molinié, M. Danot, J.M. Greneche, Magnetic properties of zinc ferrite nanoparticles synthesized by hydrolysis in a polyol medium. J. Phys. Condens. Matter 18, 9055–9069 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    D. Peddis, N. Yaacoub, M. Ferretti, A. Martinelli, G. Piccaluga, A. Musinu, C. Cannas, G. Navarra, J.M. Greneche, D. Fiorani, Cationic distribution and spin canting in CoFe2O4 nanoparticles. J. Phys. Condens. Matter 23, 426004 (2011)ADSCrossRefGoogle Scholar
  74. 74.
    M. Artus, L. Ben Tahar, F. Herbst, L. Smiri, F. Villain, N. Yaacoub, J.M. Greneche, S. Ammar, F. Fiévet, Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol. J. Phys. Condens. Matter 23, 506001 (2011)CrossRefGoogle Scholar
  75. 75.
    S. Burianova, J.P. Vejpravova, P. Holec, J. Plocek, D. Niznansky, Surface spin effects in La-doped CoFe2O4 nanoparticles prepared by microemulsion route. J. Appl. Phys. 110, 073902 (2011)ADSCrossRefGoogle Scholar
  76. 76.
    A. Yang, C.N. Chinnasamy, J.M. Greneche, Y. Chen, S.D. Yoon, K. Hsu, C. Vittoria, V.G. Harris, Large tunability of Néel temperature by growth-rate-induced cation inversion in Mn-ferrite nanoparticles. Appl. Phys. Lett. 94, 113109 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    L. Ben Tahar, M. Artus, S. Ammar, L.S. Smiri, F. Herbst, M.J. Vaulay, V. Richard, J.M. Greneche, F. Villain, F. Fievet, Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE = La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. J. Magn. Magn. Mater. 320, 3242–3250 (2008)CrossRefGoogle Scholar
  78. 78.
    Z. Beji, L. Smiri, N. Yaacoub, J.M. Greneche, N. Menguy, S. Ammar, F. Fievet, Annealing effect on the magnetic properties of Polyol-made Ni-Zn Ferrite nanoparticles. Chem. Mater. 22, 1350–1366 (2010)CrossRefGoogle Scholar
  79. 79.
    O. Ersen, S. Bégin, M. Houllé, J. Amadou, I. Janowska, J.M. Grenèche, C. Crucifix, C. Pham-Huu, Microstructural investigation of magnetic CoFe2O4 nanowires inside Carbon nanotubes by electron tomography. Nanoletters 8, 1033–1040 (2008)ADSCrossRefGoogle Scholar
  80. 80.
    Z. Beji, A. Hanini, L.S. Smiri, J. Gavard, K. Kacem, F. Villain, J.M. Greneche, F. Chau, S. Ammar, Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. Chem. Mater. 22, 5420–5429 (2010)CrossRefGoogle Scholar
  81. 81.
    A. Yang, C.N. Chinnasamy, J.M. Greneche, Y. Chen, S.D. Yoon, Z. Chen, K. Hsu, Z. Cai, K. Ziemer, C. Vittoria, V.G. Harris, Enhanced Néel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion. Nanotechnology 20, 185704 (2009)ADSCrossRefGoogle Scholar
  82. 82.
    B. Antic, A. Kremenovic, N. Jovic, M.B. Pavlovic, C. Jovalekic, A.S. Nikolic, G.F. Goya, C. Weidenthaler, Magnetization enhancement and cation valences in nonstoichiometric (Mn, Fe)3-δO4 nanoparticles. J. Appl. Phys. 111, 074309 (2012)ADSCrossRefGoogle Scholar
  83. 83.
    V. Blanco-Gutierrez, F. Jimenez-Villacorta, P. Bonville, M.J. Torralvo-Fernandez, R. Saez-Puche, X-ray absorption spectroscopy and Mössbauer spectroscopy studies of super paramagnetic ZnFe2O4 nanoparticles. J. Phys. Chem. C 115, 1627–1634 (2011)CrossRefGoogle Scholar
  84. 84.
    J.F. Hochepied, P. Bonville, M.P. Pileni, Nonstoichiometric Zinc Ferrite nanocrystals: syntheses and unusual magnetic properties. J. Phys. Chem. B 104, 905–912 (2000)CrossRefGoogle Scholar
  85. 85.
    S.J. Stewart, S.J.A. Figueroa, M.B. Sturla, R.B. Scorzelli, F. Garcia, F.G. Requejo, Magnetic ZnFe2O4 nanoferrites studied by X-ray magnetic circular dichroism and Mössbauer spectroscopy. Physica B 389, 155–158 (2007)ADSCrossRefGoogle Scholar
  86. 86.
    G.F. Goya, H.R. Rechenberg, M. Chen, W.B. Yelon, Magnetic irreversibility in ultrafine ZnFe2O4 particles. J. Appl. Phys. 87, 8005–8007 (2000)ADSCrossRefGoogle Scholar
  87. 87.
    J.M. Hastings, L.M. Corliss, An antiferromagnetic transition in Zinc Ferrite. Phys. Rev. 102, 1460–1463 (1956)ADSCrossRefGoogle Scholar
  88. 88.
    N. Viart, G. Pourroy, J.M. Greneche, Study of metal-ferrite composites: complementary use of 57Fe Mössbauer spectrometry, X-ray diffraction and TG analysis. Eur. J. Phys. Appl. Phys. 18, 33–40 (2002)ADSCrossRefGoogle Scholar
  89. 89.
    A. Karimi, B. Denizot, F. Hindre, R. Filmon, J.M. Greneche, S. Laurent, T. Jean Daou, S. Begin Colin, J.J. Le Jeune, Effect of chain length and electrical charge on properties of ammonium-bearing bisphosphonate-coated super paramagnetic iron oxide nanoparticles: formulation and physicochemical studies. J. Nanopart. Res. 12, 1239–1248 (2010)CrossRefGoogle Scholar
  90. 90.
    M.P. Fernández-García, P. Gorria, J.A. Blanco, R. Boada, J. Chaboy, D. Schmool, J.M. Greneche, Microstructure and magnetism of nanoparticles with γ-Fe core surrounded by α-Fe and iron oxide shells. Phys. Rev. B 81, 094418 (2010)ADSCrossRefGoogle Scholar
  91. 91.
    W. Kundig, H. Bommel, G. Constabaris, R.H. Linquist, Some properties of supported small α-Fe2O3 particles determined with Mössbauer effect. Phys. Rev. 142, 327–333 (1966)ADSCrossRefGoogle Scholar
  92. 92.
    F. Bodker, S. Morup, S. Linderoth, Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72, 282 (1994)ADSCrossRefGoogle Scholar
  93. 93.
    T. Furubayashi, I. Nakatani, N. Saegusa, Magnetic moment and hyperfine field in colloidal fine particles of iron. J. Phys. Soc. Jpn. 56, 1855–1858 (1987)ADSCrossRefGoogle Scholar
  94. 94.
    B.S. Clausen, S. Mørup, H. Topsøe, Evidence for chemisorption induced changes in the surface electronic and magnetic properties of small iron particles. Surf. Sci. 106, l43–l438 (1981)CrossRefGoogle Scholar
  95. 95.
    R. Birringer, H. Gleiter, H.-P. Klein, P. Marquardt, Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Phys. Lett. 102A, 365–369 (1984)ADSGoogle Scholar
  96. 96.
    F. Bodker, S. Morup, C.A. Oxborros, S. Linderoth, M.B. Madsen, J.W. Niemantsverdriet, Mössbauer studies of ultrafine iron-containing particles on a carbon. J. Phys. Condens. Matter 4, 6555–6568 (1992)ADSCrossRefGoogle Scholar
  97. 97.
    T. Shinjo, N. Hosoito, T. Takada, Magnetism of Fe interfaces studied by Mössbauer spectroscopy. J. Magn. Magn. Mater. 31–34, 879–880 (1983)CrossRefGoogle Scholar
  98. 98.
    Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic-alloys composed of ultrafine grain-structure. J. Appl. Phys. 64, 6044 (1988)ADSCrossRefGoogle Scholar
  99. 99.
    M.E. McHenry, M.A. Willard, D.E. Laughlin, Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291–433 (1999)CrossRefGoogle Scholar
  100. 100.
    G. Herzer, in Nanocrystalline soft magnetic alloys, Handbook of Magnetic Materials vol. 10 ed by K.H.J. Buschow (Elsevier Science, 1997), pp. 415–462)Google Scholar
  101. 101.
    G. Herzer, in Handbook of Magnetism and Advanced Magnetic Materials, vol. 4, ed. by H. Kronmüller, S. Parkin (Wiley, Hoboken, 2007), p. 1882Google Scholar
  102. 102.
    K. Suzuki, N. Kataoka, A. Inoue, A. Makino, T. Masumoto, High saturation magnetization and soft magnetic properties of bcc Fe Zr B alloys with ultrafine grain structure. Mater. Trans. JIM 32, 743 (1990)Google Scholar
  103. 103.
    K. Suzuki, A. Makino, A. Inoue, T. Masumoto, Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M = transition metal) alloys with high saturation magnetization. J. Appl. Phys. 70, 6232 (1991)ADSCrossRefGoogle Scholar
  104. 104.
    M.A. Willard, D.E. Laughlin, M.E. McHenry, D. Thoma, K. Sickafus, J.O. Cross, V.G. Harris, Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys. 84, 6773 (1998)ADSCrossRefGoogle Scholar
  105. 105.
    J.M. Greneche, M. Miglierini, Mössbauer spectroscopy materials science, in Mössbauer Spectrometry Applied to Iron-Based Nanocrystalline Alloys: I High Temperature Studies, ed. by M. Miglierini, D. Petridis (Kluwer Academic Publishers, Dordrecht, 1999), pp. 243–256Google Scholar
  106. 106.
    M. Miglierini, J.M. Greneche, Mössbauer Spectroscopy in Materials Science, in Mössbauer Spectrometry Applied to Iron-Based Nanocrystalline Alloys: I Hyperfine Field Distributions, ed. by M. Miglierini, D. Petridis (Kluwer Academic Publishers, Dordrecht, 1999), pp. 257–272Google Scholar
  107. 107.
    T. Kemény, D. Kaptás, L.F. Kiss, J. Balogh, I. Vincze, S. Szabó, D.L. Beke, Structure and magnetic properties of nanocrystalline soft ferromagnets. Hyperfine Interact. 130, 181–219 (2000)ADSCrossRefGoogle Scholar
  108. 108.
    J.-M. Greneche, Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors, in Intergranular Phase in Nanocrystalline Alloys: Structural and Magnetic Aspects, ed. by B. Idzikowski, P. Svec, M. Miglierini, D. Petridis (Kluwer Academic, Dordrecht, 2005), pp. 373–384Google Scholar
  109. 109.
    M. Kopcewicz, Radio-Frequency Mössbauer Spectroscopy in the Investigation of Nanocrystalline Alloys, in Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors, ed. by B. Idzikowski, P. Svec, M. Miglierini, D. Petridis (Kluwer Academic, Dordrecht, 2005), pp. 395–407CrossRefGoogle Scholar
  110. 110.
    I. Škorvánek, P. Švec, J.M. Greneche, J. Kováč, J. Marcin, R. Gerling, Influence of microstructure on the magnetic and mechanical behaviour of amorphous and nanocrystalline FeNbB alloys. J. Phys. Condens. Matter 14, 4717–4736 (2002)ADSCrossRefGoogle Scholar
  111. 111.
    M. Fujinami, Y. Hashiguchi, T. Yamamoto, Crystalline transformations in amorphous Fe73.5Cu1Nb3Si16.5B6 Alloy. Jpn. J. Appl. Phys. 29, L477–L480 (1990)ADSCrossRefGoogle Scholar
  112. 112.
    J.Z. Jiang, F. Aubertin, U. Gonser, H.R. Hilzinger, Mössbauer spectroscopy and X-ray diffraction studies of the crystallization in the amorphous Fe73.5Cu1Nb3Si13.5B9 alloy. Zeitschrift fur Metallkunde 82, 698–702 (1991)Google Scholar
  113. 113.
    J. Jiang, T. Zemcik, F. Aubertin, U. Gonser, Investigation of the phases and magnetization orientation in crystalline Fe73.5Cu1Nb3Si16.5B6 alloy. J. Mater. Sci. Lett. 10, 763–764 (1991)CrossRefGoogle Scholar
  114. 114.
    G. Hampel, A. Pundt, J. Hesse, Crystallization of Fe73.5Cu1Nb3Si13.5B9 structure and kinetics examined by X-ray diffraction and Mössbauer effect spectroscopy. J. Phys. Condens. Matter 4, 3195–3214 (1992)ADSCrossRefGoogle Scholar
  115. 115.
    A. Pundt, G. Hampel, J. Hesse, Mössbauer effect studies on amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9. Zeitschrift fur Physik-Condensed Matter 87, 65–72 (1992)ADSCrossRefGoogle Scholar
  116. 116.
    G. Rixecker, P. Schaaf, U. Gonser, Crystallization behaviour of amorphous Fe73.5CulNb3Si13.5B9. J. Phys. Condens. Matter 4, 10295–10310 (1992)ADSCrossRefGoogle Scholar
  117. 117.
    G. Rixecker, P. Schaaf, U. Gonser, Depth selective analysis of phases and spin textures in amorphous, nanocrystalline and crystalline ribbons treated with an excimer laser. J. Phys. D Appl. Phys. 26, 870–879 (1993)ADSCrossRefGoogle Scholar
  118. 118.
    G. Rixecker, P. Schaaf, U. Gonser, On the interpretation of the Mössbauer spectra of ordered Fe-Si alloys. Physica Status Solidi A- Appl. Res. 139, 309–320 (1993)ADSCrossRefGoogle Scholar
  119. 119.
    M. Miglierini, Mössbauer-effect study of the hyperfine field distributions in the residual amorphous phase of Fe-Cu-Nb-Si-B nanocrystalline alloys. J. Phys. Condens. Matter 6, 431–1438 (1994)CrossRefGoogle Scholar
  120. 120.
    M. Miglierini, J.M. Greneche, Mössbauer spectrometry of iron-based nanocrystalline alloys: I Fitting model of Mössbauer spectra. J. Phys. Condens. Matter 9, 2303–2319 (1997)ADSCrossRefGoogle Scholar
  121. 121.
    M. Miglierini, J.M. Greneche, Mössbauer spectrometry of iron-based nanocrystalline alloys: II Topography of hyperfine interactions in Fe(Cu)ZrB alloys. J. Phys. Condens. Matter 9, 2321–2347 (1997)ADSCrossRefGoogle Scholar
  122. 122.
    J.M. Greneche, Nanocrystalline iron-based alloys investigated by Mössbauer spectroscopy. Hyperfine Interact. 110, 81–91 (1997)ADSCrossRefGoogle Scholar
  123. 123.
    J.M. Borrego, C.F. Conde, A. Conde, V.A. Peña-Rodríguez, J.M. Greneche, Devitrification process of FeSiBCuNbX nanocrystalline alloys: Mössbauer study of the intergranular phase. J. Phys. Condens. Matter 12, 8089–8100 (2000)ADSCrossRefGoogle Scholar
  124. 124.
    J.M. Borrego, A. Conde, V.A. Peña-Rodríguez, J.M. Greneche, Mössbauer spectrometry of FINEMET-type nanocrystalline alloys: a revisiting fitting procedure. Hyperfine Interac. 131, 67–82 (2001)ADSCrossRefGoogle Scholar
  125. 125.
    O. Hupe, M.A. Chuev, H. Bremers, J. Hesse, A.M. Afanas’ev, Magnetic properties of nanostructured ferromagnetic FeCuNbB alloys revealed by a novel method for evaluating complex Mössbauer spectra. J. Phys. Condens. Matter 11, 10545–10556 (1999)ADSCrossRefGoogle Scholar
  126. 126.
    A. Slawska-Waniewska, A. Roig, E. Molins, J.M. Greneche, R. Zuberek, Surface effects in Fe-based nanocrystalline alloys. J. Appl. Phys. 81, 4652–4654 (1997)ADSCrossRefGoogle Scholar
  127. 127.
    A. Slawska-Waniewska, K. Brzozka, J.M. Greneche, Surface effects in Fe-Based Nanocrystalline alloys. Acta Physica Polonica 91, 229–232 (1997)Google Scholar
  128. 128.
    J.M. Greneche, A. Slawska-Waniewska, Interface effects in Fe89Zr7B4 nanocrystalline alloy followed by Mössbauer spectroscopy. Mater. Sci. Eng. A 226–228, 526–530 (1997)Google Scholar
  129. 129.
    A. Slawska-Waniewska, J.M. Greneche, Magnetic properties of interface in soft magnetic nanocrystalline alloys. Phys. Rev. B 56, R8491–R8494 (1997)ADSCrossRefGoogle Scholar
  130. 130.
    A. Slawska-Waniewska, Interface magnetism in Fe-based nanocrystalline alloys. J. Phys. IV(8), 11–18 (1998)Google Scholar
  131. 131.
    J.M. Greneche, A. Slawska-Waniewska, About the interfacial zone in nanocrystalline alloys. J. Magn. Magn. Mater. 215–216, 264–267 (2000)CrossRefGoogle Scholar
  132. 132.
    T. Kemeny, L.K. Varga, L.F. Kiss, J. Balogh, T. Pusztai, L. Toth, I. Toth, Magnetic properties and local structure of Fe-Zr-B-Cu nanocrystalline alloys. Mater. Sci. Forum 269–272, 419–424 (1998)CrossRefGoogle Scholar
  133. 133.
    O. Crisan, Y. Labaye, L. Berger, J.M.D. Coey, J.M. Greneche, Exchange coupling effects in nanocrystalline alloys studied by Monte Carlo simulation. J. Appl. Phys. 91, 8727–8729 (2002)ADSCrossRefGoogle Scholar
  134. 134.
    O. Crisan, Y. Labaye, L. Berger, J.M. Greneche, Monte Carlo simulation of magnetic properties in nanocrystalline like Systems. J. Phys. Condens. Matter 15, 6331–6344 (2003)ADSCrossRefGoogle Scholar
  135. 135.
    O. Crisan, J.M. Greneche, Y. Labaye, L. Berger, A.D. Crisan, M. Angelakeris, J.M. Le Breton, N.K. Flevaris, Properties and applications of nanocrystalline alloys from amorphous precursors, in Magnetic Properties of Nanostructured Materials/Monte Carlo Simulation and Experimental Approach for Nanocrystalline Alloys and Core-Shell Nanoparticles, ed. by B. Idzikowski, P. Svec, M. Miglierini, D. Petridis (Kluwer Academic, Dordrecht, 2005), pp. 253–266Google Scholar
  136. 136.
    N. Randrianantoandro, A. Slawska-Waniewska, J.M. Greneche, Magnetic interactions of nanocrystallized Fe-Cr amorphous alloys. Phys. Rev. B 56, 10797–10800 (1997)ADSCrossRefGoogle Scholar
  137. 137.
    N. Randrianantoandro, A. Slawska-Waniewska, J.M. Greneche, Magnetic properties of nanocrystallized Fe-Cr amorphous alloys. J. Phys. Condens. Matter 9, 10485–10500 (1997)ADSCrossRefGoogle Scholar
  138. 138.
    M. Miglierini, I. Skorvanek, J.M. Greneche, Microstructure and hyperfine interactions of the Fe73:5Nb4:5Cr5Cu1B16 nanocrystalline alloys: Mössbauer effect temperature measurements. J. Phys. Condens. Matter 10, 3159–3176 (1998)ADSCrossRefGoogle Scholar
  139. 139.
    T. Kemeny, J. Balogh, I. Farkas, D. Kaptas, L.F. Kiss, T. Pusztai, L. Toth, I. Vincze, Inter-grain coupling in nanocrystalline soft magnets. J. Phys. Condens. Matter 10, L221–L227 (1998)ADSCrossRefGoogle Scholar
  140. 140.
    T. Kemeny, D. Kaptas, J. Balogh, L.F. Kiss, T. Pusztai, I. Vincze, Microscopic study of the magnetic coupling in a nanocrystalline soft magnet. J. Phys. Condens. Matter 11, 2841–2847 (1999)ADSCrossRefGoogle Scholar
  141. 141.
    D. Kaptas, T. Kemeny, J. Balogh, L. Bujdoso, L.F. Kiss, T. Pusztai, I. Vincze, Anomalous magnetic properties of the nano-size residual amorphous phase in nanocrystals. J. Phys. Condens. Matter 11, L179–L185 (1999)ADSCrossRefGoogle Scholar
  142. 142.
    I. Skorvanek, J. Kovac, J.M. Greneche, Structural and magnetic properties of the intergranular amorphous phase in FeNbB nanocrystalline alloys. J. Phys. Condens. Matter 12, 9085–9093 (2000)ADSCrossRefGoogle Scholar
  143. 143.
    M. Kopcewicz, Mössbauer effect studies of amorphous metals in magnetic radio-frequency fields. Struct. Chem. 2, 313–342 (1991)Google Scholar
  144. 144.
    M. Miglierini, M. Kopcewicz, B. Idzikowski, Z.E. Horvath, A. Grabias, I. Skorvanek, P. Duzewski, S. Cs Daroczi, Structure, hyperfine interactions, and magnetic behavior of amorphous and nanocrystalline Fe80M7B12Cu1.(M=Mo, Nb, Ti) alloys J. Appl. Phys. 85, 1014–1025 (1999)ADSCrossRefGoogle Scholar
  145. 145.
    M. Kopcewicz, A. Grabias, I. Skorvanek, J. Marcin, B. Idzikowski, Mössbauer study of the magnetic properties of nanocrystalline Fe80.5Nb7B12.5 alloy. J. Appl. Phys. 85, 4427–4429 (1999)ADSCrossRefGoogle Scholar
  146. 146.
    M. Kopcewicz, A. Grabias, I. Skorvánek, Study of the nanocrystalline Fe73.5Nb4.5Cr5Cu1B16 alloy by the radio-frequency-Mössbauer technique. J. Appl. Phys. 83, 935–941 (1998)ADSCrossRefGoogle Scholar
  147. 147.
    J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloying. Metall. Trans. 1, 2943 (1970)Google Scholar
  148. 148.
    J.S. Benjamin, Mechanical alloying. Sci. Am. 234, 40–49 (1976)ADSCrossRefGoogle Scholar
  149. 149.
    J.S. Benjamin, in New materials by mechanical alloying techniques, ed, by E. Arzt, L. Schultz, (DGM Informationgesellschaft, Oberursel, Germany, 1989), pp. 3–18Google Scholar
  150. 150.
    J.S. Benjamin, Metal Powder Rep. 45, 122–127 (1990)CrossRefGoogle Scholar
  151. 151.
    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001)CrossRefGoogle Scholar
  152. 152.
    H. Gleiter, Nanocrystalline materials. Prog. Mater. Sci. 33, 223–315 (1989)CrossRefGoogle Scholar
  153. 153.
    H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater 48, 1–29 (2000)CrossRefGoogle Scholar
  154. 154.
    L. Del Bianco, A. Hernando, E. Bonetti, E. Navarro, Grain-boundary structure and magnetic behavior in nanocrystalline ball-milled iron, B. Phys. Rev. 56, 8894–8901 (1997)CrossRefGoogle Scholar
  155. 155.
    L. Del Bianco, C. Ballesteros, J.M. Rojo, A. Hernando, Magnetically ordered fcc structure at the relaxed grain boundaries of pure nanocrystalline Fe. Phys. Rev. Lett. 81, 4500 (1998)ADSCrossRefGoogle Scholar
  156. 156.
    E. Bonetti, L. Del Bianco, D. Fiorani, D. Rinaldi, R. Caciuffo, A. Hernando, Disordered magnetism at the grain boundary of pure nanocrystalline iron. Phys. Rev. Lett. 83, 2829 (1999)ADSCrossRefGoogle Scholar
  157. 157.
    L. Del Bianco, A. Hernando, D. Fiorani, Spin-glass-like behaviour in nanocrystalline Fe, (a). Phys. Stat. Sol. 189, 533 (2002)ADSCrossRefGoogle Scholar
  158. 158.
    U. Herr, J. Jing, R. Birringer, U. Gonser, H. Gleiter, Investigation of nanocrystalline iron materials by Mössbauer spectroscopy. Appl. Phys. Lett. 50, 472 (1987)ADSCrossRefGoogle Scholar
  159. 159.
    A. Ślawska-Waniewska, M. Grafoute, J.M. Greneche, Magnetic coupling and spin structure in nanocrystalline iron powders. J. Phys. Condens. Matter 18, 2235–2248 (2006)ADSCrossRefGoogle Scholar
  160. 160.
    M. Grafouté, Y. Labaye, F. Calvayrac, J.M. Greneche, Structure of grain boundaries in nanostructured powders: a Monte-Carlo/EAM numerical investigation. Eur. J. P B 45, 419–424 (2005)ADSCrossRefGoogle Scholar
  161. 161.
    F. Ferey, M. Leblanc, R. De Pape, J Pannetier Inorganic Solid Fluorides ed. by P. Hagenmuller (Academic, New York) p. 395Google Scholar
  162. 162.
    J.M. Greneche, F. Varret, in Mössbauer Spectroscopy Applied to Magnetism and Materials Science, ed. by G. Long, F. Grandjean (Plenum, New York, 1993), p. 161 and references thereinGoogle Scholar
  163. 163.
    G. Ferey, F. Varret, J.M.D. Coey, Amorphous FeF3 non crystalline magnet with antiferromagnetic interactions. J. Phys. C Solid State Phys. 12, L531 (1979)ADSCrossRefGoogle Scholar
  164. 164.
    J.M. Greneche, A. Le Bail, M. Leblanc, A. Mosset, F. Varret, J. Galy, G. Ferey, Structural aspects of amorphous fluorides FeF3. J. Phys. C Solid State Phys. 21, 1351–1361 (1988)ADSCrossRefGoogle Scholar
  165. 165.
    H. Guérault, J.-M. Greneche, Microstructural modelling of iron-based nanostructured fluoride powders prepared by mechanical milling. J. Phys. Condens. Matter 12, 4791–4798 (2000)ADSCrossRefGoogle Scholar
  166. 166.
    H. Guérault, M. Tamine, J.M. Greneche, Mössbauer study of nanostructured iron fluoride powders. J. Phys. Condens. Matter 12, 9497–9508 (2000)ADSCrossRefGoogle Scholar
  167. 167.
    H. Guérault, I. Labaye, J.-M. Greneche, Recoilless factors in nanostructured iron-based powders. Hyp. Inter. 136, 57–63 (2001)ADSCrossRefGoogle Scholar
  168. 168.
    B. Bureau, H. Guérault, G. Silly, J.Y. Buzaré, J.M. Greneche, NMR investigation of mechanically milled nanostructured GaF3 powders. J. Phys. Condens. Matter 11, L423–L431 (1999)ADSCrossRefGoogle Scholar
  169. 169.
    B. Fongang, I. Labaye, F. Calvayrac, J.M. Greneche, S. Zekeng, Coupled structural and magnetic properties of ferric fluoride nanostructures I: a Metropolis atomistic study. J. Magn. Magn. Mater. 322, 2888–2892 (2010)ADSCrossRefGoogle Scholar
  170. 170.
    G. Le Caër, E. Bauer-Grosse, A. Pianelli, E. Bouzy, J. Matteazzi, Mechanically driven syntheses of carbides and silicides. Mater. Sci. 25, 4726–4731 (1990)ADSCrossRefGoogle Scholar
  171. 171.
    G. Le Caer, P. Delcroix, T.D. Shen, B. Malaman, Mössbauer investigation of intermixing during ball milling of Fe0.3Cr0.7 and Fe0.5W0.5 powder mixtures. Phys. Rev. B 54, 12775–12786 (1996)ADSCrossRefGoogle Scholar
  172. 172.
    R.J. Cooper, N. Randrianantoandro, N. Cowlam, J.M. Greneche, A study of the solid state “amorphisation” reaction in Fe58Ta42 by diffraction and Mössbauer spectrometry. J. Phys. Condens. Matter 9, 1425–1433 (1997)ADSCrossRefGoogle Scholar
  173. 173.
    N. Randrianantoandro, R.J. Cooper, J.M. Greneche, N. Cowlam, Study of the solid state “amorphisation” reaction in Fe50Re50 by Mössbauer spectrometry and diffraction measurements. J. Phys. Condens. Matter 14, 9713–9724 (2002)ADSCrossRefGoogle Scholar
  174. 174.
    C. González, G.A. Pérez Alcázar, L.E. Zamora, J.A. Tabares, J.M. Greneche, Magnetic properties of FexMn0.600-xAl0.400, 0.200 ≤ x ≤ 0.600, disordered alloy series. J. Phys. Condens. Matter 14, 6531–6542 (2002)ADSCrossRefGoogle Scholar
  175. 175.
    H. Moumeni, S. Alleg, J.M. Greneche, Structural properties of Fe50Co50 nanostructured powder prepared by mechanical alloying. J. Alloys Compd. 386, 12–19 (2005)CrossRefGoogle Scholar
  176. 176.
    S. Azzaza, S. Alleg, H. Moumeni, A.R. Nemamcha, J.L. Rehspringer, J.M. Greneche, Magnetic properties of nanostructured ball-milled Fe and Fe50Co50 alloy. J. Phys. Condens. Matter 18, 7257–7272 (2006)ADSCrossRefGoogle Scholar
  177. 177.
    H. Moumeni, S. Alleg, J.M. Greneche, Formation of ball-milled Fe-Mo nanostructured powders. J. Alloys Compd. 419, 140–144 (2006)CrossRefGoogle Scholar
  178. 178.
    J.F. Valderruten, G.A. Perez Alcazar, J.M. Greneche, Mössbauer and x-ray study of mechanically alloyed Fe–Ni alloys around the Invar composition. J. Phys. Condens. Matter 20, 485204 (2008)CrossRefGoogle Scholar
  179. 179.
    G.F. Goya, H.R. Rechenberg, J.Z. Jiang, Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys. 84, 1101–1108 (1998)ADSCrossRefGoogle Scholar
  180. 180.
    P. Druska, U. Steinike, V. Sepelak, Surface structure of mechanically activated and of Mechanosynthesized Zinc Ferrite. J. Solid State Chem. 146, 13–21 (1999)ADSCrossRefGoogle Scholar
  181. 181.
    V. Sepelak, D. Baabe, K.D. Becker, Mechanically induced cation redistribution and spin canting in nickel ferrite. J. Mater. Synth. Process. 8, 333–337 (2000)CrossRefGoogle Scholar
  182. 182.
    C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guérault, J.-M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J. Phys. Condens. Matter 12, 7795–7805 (2000)ADSCrossRefGoogle Scholar
  183. 183.
    C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, R. Justin Joseyphus, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, J.-M. Greneche, Ferrimagnetic ordering in nanostructured CdFe2O4 spinel. J. Appl. Phys. 90, 527–529 (2001)ADSCrossRefGoogle Scholar
  184. 184.
    C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, R.J. Joseyphus, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, H. Guerault, J.-M. Greneche, Structure and magnetic properties of nanocrystalline ferrimagnetic CdFe2O4 spinel. Scripta Mater. 44, 1411–1415 (2001)CrossRefGoogle Scholar
  185. 185.
    C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.-M. Greneche, Ferrimagnetic ordering in nanostructured zinc ferrite. Scr. Mater. 44, 1407–1410 (2001)CrossRefGoogle Scholar
  186. 186.
    V. Sepelak, M. Menzel, K.D. Becker, F. Krumeich, Mechanochemical reduction of magnesium ferrite. J. Phys. Chem. 44, 1411–1415 (2001)Google Scholar
  187. 187.
    N. Ponpandian, A. Narayanasamy, C.N. Chinnasamy, N. Sivakumar, J.-M. Greneche, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, Néel temperature enhancement in nanostructured nickel zinc ferrite. Appl. Phys. Lett. 86, 192510 (2005)ADSCrossRefGoogle Scholar
  188. 188.
    N. Sivakumar, A. Narayanasamy, N. Ponpandian, J.-M. Greneche, K. Shinoda, B. Jeyadevan, K. Tohji, Effect of mechanical milling on the electrical and magnetic properties of nanostructured Ni0.5Zn0.5Fe2O4. J. Phys. D Appl. Phys. 39, 4688–4694 (2006)ADSCrossRefGoogle Scholar
  189. 189.
    N. Sivakumar, A. Narayanasamy, K. Shinoda, C.N. Chinnasamy, B. Jeyadevan, J.-M. Greneche, Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J. Appl. Phys. 102, 013916 (2007)ADSCrossRefGoogle Scholar
  190. 190.
    V. Sepelak, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, J. Litterst, S.J. Campbell, K.D.J. Becker, Nanocrystalline nickel ferrite, NiFe2O4: Mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior. Phys. Chem. C(111), 5026–5033 (2007)Google Scholar
  191. 191.
    A. Mahesh Kumar, K.H. Rao, J.M. Greneche, Mössbauer investigation on Ni–Zn nanoferrite with the highest saturation magnetization. J. Appl. Phys. 105, 073919 (2009)ADSCrossRefGoogle Scholar
  192. 192.
    E.C. Passamani, B.R. Segatto, C. Larica, R. Cohen, J.M. Greneche, Magnetic hysteresis loop shift in NiFe2O4 nanocrystalline powder with large grain boundary fraction. J. Magn. Magn. Mater. 322, 3917–3925 (2010)ADSCrossRefGoogle Scholar
  193. 193.
    N. Sivakumara, A. Narayanasamya, J.-M. Greneche, R. Murugaraj, Y.S. Lee, Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. J. Alloy. Compd. 504, 395–402 (2010)CrossRefGoogle Scholar
  194. 194.
    C.N. Chinnasamy, J.M. Greneche, M. Guillot, B. Latha, T. Sakai, C. Vittoria, V.G. Harris, Structural and size dependent magnetic properties of single phase nanostructured gadolinium-iron-garnet under high magnetic field of 32 tesla. J. Appl. Phys. 107, 09A512 (2010)CrossRefGoogle Scholar
  195. 195.
    D. Prabhu, A. Narayanasamy, K. Shinoda, B. Jeyadeven, J.-M. Greneche, K. Chattopadhyay, Grain size effect on the phase transformation temperature of nanostructured CuFe2O4. J. Appl. Phys. 109, 013532 (2011)ADSCrossRefGoogle Scholar
  196. 196.
    M. Guillot, C.N. Chinnasamy, J.M. Greneche, V.G. Harris, Tuning the cation distribution and magnetic properties of single phase nanocrystalline Dy3Fe5O12 garnet. J. Appl. Phys. 111, 07A517 (2012)CrossRefGoogle Scholar
  197. 197.
    R. Zboril, M. Mashlan, D. Petridis, Iron(III) Oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 14, 969–982 (2002)CrossRefGoogle Scholar
  198. 198.
    L. Machala, J. Tucek, R. Zboril, Polymorphous transformations of Nanometric Iron(III) Oxide: a review. Chem. Mater. 23, 3255–3272 (2011)CrossRefGoogle Scholar
  199. 199.
    D.C. Cook, Application of Mössbauer spectroscopy to the study of corrosion. Hyperfine Interact. 153, 61–82 (2004)ADSCrossRefGoogle Scholar
  200. 200.
    F.E. Wagner, A. Kyek, Mössbauer spectroscopy in archaeology: introduction and experimental considerations. Hyperfine Interact. 154, 5–33 (2004)ADSCrossRefGoogle Scholar
  201. 201.
    E. Murad, Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Miner. 45, 413–430 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut des Molécules et Matériaux du MansUMR CNRS 6283Le Mans Cedex 9France

Personalised recommendations