Skip to main content

Application of Mössbauer Spectroscopy in Earth Sciences

  • Chapter
  • First Online:
Mössbauer Spectroscopy

Abstract

Iron being the fourth most abundant element in the earth crust, 57Fe Mössbauer spectroscopy has become a suitable additional technique for the characterization of all kind of soil materials and minerals. However, for that purpose a good knowledge of the spectral behavior of the various minerals is indispensable. In this chapter a review of the most important soil materials and rock-forming minerals is presented. It starts with a description of the Mössbauer spectroscopic features of the iron oxides and hydroxides, which are essentially present in soils and sediments. Further, the Mössbauer spectra from sulfides, sulfates and carbonates are briefly considered. Finally, the Mössbauer features of the typical and most common silicate and phosphate minerals are reported. The chapter ends with some typical examples, illustrating the use and power of Mössbauer spectroscopy in the characterization of minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G.J. Long, T.E. Cranshaw, G. Longworth, The ideal Mössbauer effect absorber thicknesses. Mössbauer Eff. Ref. Data J. 6, 42–49 (1983)

    Google Scholar 

  2. D.G. Rancourt, A.M. McDonald, A.E. Lalonde, J.Y. Ping, Mössbauer absorber thicknesses for accurate site populations in Fe-bearing minerals. Am. Mineral. 78, 1–7 (1993)

    Google Scholar 

  3. G.M. Bancroft, Mössbauer Spectroscopy. An Introduction for Inorganic Chemists and Geochemists (McGraw-Hill, Maidenhead, 1973)

    Google Scholar 

  4. G. Lang, Interpretation of experimental Mössbauer spectrum areas. Nucl. Instrum. Meth. 24, 425–428 (1963)

    Article  ADS  Google Scholar 

  5. D.G. Rancourt, Accurate site populations from Mössbauer spectroscopy. Nucl. Instr. Meth. Phys. Res. B 44, 199–210 (1989)

    Article  ADS  Google Scholar 

  6. E. Murad, The characterization of goethite by Mössbauer spectroscopy. Am. Mineral. 67, 1007–1011 (1982)

    Google Scholar 

  7. D.D. Amasiriwardena, E. De Grave, L.H. Bowen, S.B. Weed, Quantitative determination of aluminium-substituted goethite-hematite mixtures by Mössbauer spectroscopy. Clays Clay Miner. 34, 250–256 (1986)

    Article  Google Scholar 

  8. R.E. Vandenberghe, E. De Grave, G. De Geyter, C. Landuydt, Characterization of goethite and hematite in a Tunisian soil profile by Mössbauer spectroscopy. Clays Clay Miner. 34, 275–280 (1986)

    Article  Google Scholar 

  9. J. Hesse, A. Rübartsch, Model independent evaluation of overlapped Mössbauer spectra. J. Phys. E. Sci. Instrum. 7, 526–532 (1974)

    Article  ADS  Google Scholar 

  10. G. Le Caer, J.M. Dubois, Evaluation of hyperfine distributions from overlapped Mössbauer spectra of amorphous alloys. J. Phys. E. Sci. Instrum. 12, 1083–1090 (1979)

    Article  ADS  Google Scholar 

  11. C.O. Wivel, S. Morup, Improved compotutional procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra. J. Phys. E. Sci. Instrum. 14, 605–610 (1981)

    Article  ADS  Google Scholar 

  12. R.E. Vandenberghe, E. De Grave, P.M.A. de Bakker, On the methodology of the analysis of Mössbauer spectra. Hyp. Interact. 83, 29–49 (1994)

    Article  ADS  Google Scholar 

  13. L.H. Bowen, S.B. Weed, Mössbauer spectroscopy of soils and sediments, in Chemical Mössbauer Spectroscopy, ed. by R.H. Herber (Plenum, New York, 1984), pp. 217–242

    Chapter  Google Scholar 

  14. E. Murad, J.H. Johnston, Iron oxides and oxyhydroxides, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 2, ed. by G.J. Long (Plenum, New York, 1987), pp. 507–582

    Google Scholar 

  15. R.L. Parfitt, C.W. Childs, Estimation of forms of Fe and Al—A review and analysis of contrasting soils by dissolution and Mössbauer methods. Aust. J. Soil Res. 26, 121–144 (1988)

    Article  Google Scholar 

  16. E. Murad, Application of 57Fe Mössbauer spectroscopy to problems in clay mineralogy and Soil Science: possibilities and limitations, in Advances in Soil Science, vol. 12, ed. by B.A. Stewart (Springer, New York, 1990), pp. 125–157

    Google Scholar 

  17. R.E. Vandenberghe, E. De Grave, L.H. Bowen, C. Landuydt, Some aspects concerning the characterization of iron oxides and hydroxides in soils and clays. Hyp. Interact. 53, 175–196 (1990)

    Article  ADS  Google Scholar 

  18. L.H. Bowen, E. De Grave, R.E. Vandenberghe, Mössbauer effect studies of magnetic soils and sediments, in Mössbauer Spectroscopy Applied to Magnetism and Material Science, vol. 1, ed. by G.J. Long, F. Grandjean (Plenum, New York, 1993), pp. 115–159

    Google Scholar 

  19. E. Murad, Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Miner. 45, 413–430 (2010)

    Article  Google Scholar 

  20. J.B. Forsyth, I.G. Hedley, C.E. Johnson, The magnetic structure and hyperfine field of goethite (α-FeOOH). J. Phys. Chem. C 1, 179–188 (1968)

    ADS  Google Scholar 

  21. E. De Grave, R.E. Vandenberghe, 57Fe Mössbauer effect study of well crystallized goethite (α-FeOOH). Hyp. Interact. 28, 643 (1986)

    Article  ADS  Google Scholar 

  22. D.C. Golden, L.H. Bowen, S.B. Weed, J.M. Bigham, Mössbauer studies of synthetic and soil-occuring aluminium-substituted goethites. Soil Sci. Soc. Am. J. 43, 802–808 (1979)

    Article  Google Scholar 

  23. B.A. Goodman, D.G. Lewis, Mössbauer spectra of aluminous goethites (α—FeOOH). J. Soil Sci. 32, 351–364 (1981)

    Article  Google Scholar 

  24. S.A. Fysh, P.E. Clark, Aluminium goethite: A Mössbauer study. Phys. Chem. Miner. 8, 180–187 (1982)

    Article  ADS  Google Scholar 

  25. E. Murad, U. Schwertmann, The influence of aluminum substitution and crystallinity on the Mössbauer spectra of goethite. Clay Miner. 18, 301–312 (1983)

    Article  Google Scholar 

  26. J. Fleisch, R. Grimm, J. Grübler, P. Gütlich, Determination of the aluminum content in natural and synthetic alumo-goethites using Mössbauer spectroscopy. J. Phys. Colloq. C1(41), 169–170 (1980)

    Google Scholar 

  27. T. Ericsson, A. Krishnamurthy, B. Srivastava, Morin-transition in Ti-substituted hematite: A Mössbauer study. Phys. Scr. 33, 88–90 (1986)

    Article  ADS  Google Scholar 

  28. J.H. Johnston, K. Norrish, 57Fe Mössbauer spectroscopic study of a selection of Australian and other goethites. Aust. J. Soil Res. 19, 231–237 (1981)

    Article  Google Scholar 

  29. J. Friedl, U. Schwertmann, Aluminium influence on iron oxides: XVIII. The effect of Al substitution and crystal size on magnetic hyperfine fields of natural goethites. Clay Miner. 31, 455–464 (1996)

    Article  Google Scholar 

  30. D.G. Schulze, U. Schwertmann, The influence of aluminum on iron oxides. X. Properties of Al substituted goethites. Clay Miner. 19, 521–539 (1984)

    Article  Google Scholar 

  31. E. Wolska, U. Schwertmann, The mechanism of solid solution formation between goethite and diaspore. N Jb. Miner. Mh. 5, 213–223 (1993)

    Google Scholar 

  32. C.A. Barrero, R.E. Vandenberghe, E. De Grave, G.M. Da Costa, A qualitative analysis of the Mössbauer spectra of aluminous goethites based on existing models, in ed. by I. Ortali. Conference Proceedings, vol 50 “ICAME 95″ (Editrice Compositoir, Bologna, 1996)

    Google Scholar 

  33. C.A. Barrero, R.E. Vandenberghe, E. De Grave, The electrical hyperfine parameters in synthetic aluminogoethites. Czech J. Phys. 47, 533–536 (1997)

    Article  ADS  Google Scholar 

  34. C.A. Barrero, R.E. Vandenberghe, E. De Grave, A.L. Morales, The influence of the sample properties on the electrical hyperfine parameters in synthetic aluminogoethites. Hyp. Interact. C2, 209–212 (1997)

    Google Scholar 

  35. R.E. Vandenberghe, C.A. Barrero, G.M. Da Costa, E. Van San, E. De Grave, Mössbauer characterization of iron oxides and (oxy) hydroxides: The present state of the art. Hyp. Interact. 126, 247–259 (2000)

    Article  ADS  Google Scholar 

  36. C.A. Barrero, R.E. Vandenberghe, E. De Grave, A.L. Morales, H. Perez, The experimental nuclear quadrupole interaction in synthetic Al-goethites of various crystallinity. Hyp. Interact. 148/149, 337–344 (2003)

    Article  ADS  Google Scholar 

  37. J.A.M. Gómez, V.G. de Resende, J. Antonissen, E. De Grave, Influence of Mn-for-Fe substitution on structural properties of synthetic goethite. Hyp. Interact. 189, 143–149 (2009)

    Article  ADS  Google Scholar 

  38. R.E. Vandenberghe, A.E. Verbeeck, E. De Grave, W. Stiers, 57Fe Mössbauer effect Study of Mn-substituted goethite and hematite. Hyperfine Interact. 29, 1157–1160 (1986)

    Article  ADS  Google Scholar 

  39. R.M. Cornell, R. Giovanoli, P.W. Schindler, Clays Clay Miner. 35, 21–28 (1987)

    Article  Google Scholar 

  40. T.G. Quin, G.J. Long, C.G. Benson, S. Mann, R.J. Williams, Influence of silicon and phosphorus on structural and magnetic properties of synthetic goethite and related oxides. Clays Clay Miner. 36, 165–175 (1988)

    Article  Google Scholar 

  41. S.K. Kwon, K. Kimijima, K. Kanie, S. Suzuki, A. Muramatsu, M. Saito, K. Shinoda, Y. Waseda, Influence of silicate ions on the formation of goethite from green rust in aqueous solution. Corros. Sci. 49, 2946–2961 (2007)

    Article  Google Scholar 

  42. D. Chambaere, E. De Grave, On the Néel temperature of β-FeOOH: structural dependence and its implications. J. Magn. Magn. Mater. 42, 263–268 (1984)

    Article  ADS  Google Scholar 

  43. C.W. Childs, B.A. Goodman, E. Paterson, F.W.D. Woodhams, Nature of iron in akaganeite (ϑ-FeOOH). Aust. J. Chem. 33, 15–26 (1980)

    Article  Google Scholar 

  44. D. Chambaere, E. De Grave, R.L. Vanleerberghe, R.E. Vandenberghe, The electric field gradient at the iron sites in β-FeOOH. Hyp. Interact. 20, 249–262 (1984)

    Article  ADS  Google Scholar 

  45. D. Chambaere, E. De Grave, On the influence of the double iron co-ordination on the hyperfine field in β-FeOOH. J. Magn. Magn. Mater. 44, 349–352 (1984)

    Article  ADS  Google Scholar 

  46. C.E. Johnson, Antiferromagnetism of γ-FeOOH: A Mössbauer effect study. J. Phys. C: Solid State Phys. 2, 1996–2002 (1969)

    Article  ADS  Google Scholar 

  47. E. Murad, U. Schwertmann, The influence of crystallinity on the Mössbauer spectrum of lepidocrocite. Mineral. Mag. 48, 507–511 (1984)

    Article  Google Scholar 

  48. E. De Grave, R.M. Persoons, D.G. Chambaere, R.E. Vandenberghe, L.H. Bowen, An 57Fe Mössbauer effect study of poorly crystalline γ-FeOOH. Phys. Chem. Miner. 13, 61–67 (1986)

    Article  ADS  Google Scholar 

  49. U. Schwertmann, E. Wolska, The influence of aluminum on iron oxides. XV. Al-for-Fe substitution in synthetic lepidocrocite. Clays Clay Miner. 38, 209–212 (1990)

    Article  Google Scholar 

  50. E. De Grave, G.M. da Costa, L.H. Bowen, U. Schwertmann, R.E. Vandenberghe, 57Fe Mössbauer-effect study of Al-substituted lepidocrocites. Clays Clays Miner. 44, 214–219 (1996)

    Article  Google Scholar 

  51. F.V. Chukhrov, B.B. Zvyagin, A.I. Gorshkov, L.P. Ermilova, V.V. Korovushkin, E.S. Rudnitskaya, N. Yu Yakubovskaya, Ferroxyhyte, a new modification of FeOOH. Izvest. Akad. Nauk. SSSR. Ser. Geol. 5, 5–24 (1976)

    Google Scholar 

  52. Y.N. Vodyanitskii, A.V. Sivtsov, Formation of ferrihydrite, ferroxyhyte, and vernadite in soil. Eurasian Soil Sci. 37, 863–875 (2004)

    Google Scholar 

  53. L. Carlson, U. Schwertmann, Natural occurrence of feroxyhite (δ’-FeOOH). Clays Clay Miner. 28, 272–280 (1980)

    Article  Google Scholar 

  54. M.B. Madsen, S. Mørup, C. Bender Koch, A study of microcrystals of synthetic feroxyhite (Ω’-FeOOH). Surf. Sci. 156, 328–334 (1985)

    Article  Google Scholar 

  55. K.M. Towe, W.F. Bradley, Mineralogical constitution of colloidal ‘hydrous ferric oxides’. J. Colloid Interface Sci. 24, 384–392 (1967)

    Article  Google Scholar 

  56. R.A. Eggleton, R.W. Fitzpatrick, New data and a revised structural model for ferrihydrite. Clays Clay Miner. 36, 111–124 (1988)

    Article  Google Scholar 

  57. C.W. Childs, Ferrihydrite: A review of structure, properties and occurrence in relation to soils. Z. Pflanzenernähr. Bodenk. 155, 441–448 (1992)

    Article  Google Scholar 

  58. R.L. Parfitt, C.W. Childs, A structural model for natural siliceous ferrihydrite. Clays Clay Miner. 40, 675–681 (1992)

    Article  Google Scholar 

  59. V.A. Drits, B.A. Sakhorov, A.L. Salyn, A. Manceau, Structural model for ferrihydrite. Clay Miner. 28, 185–207 (1993)

    Article  Google Scholar 

  60. E. Jansen, A. Kyek, W. Schäfer, U. Schwertmann, The structure of six-line ferrihydrite. Appl. Phys. A 74, 04–06 (2002)

    Article  Google Scholar 

  61. F.M. Michel, L. Ehm, S.M. Antao, P.L. Lee, P.J. Chupas, L. Gang, D.R. Strongin, M.A.A. Schoonen, B.L. Phillips, J.B. Parise, The structure of ferrihydrite, a nanocrystalline material. Science 316, 1726–1729 (2007)

    Article  ADS  Google Scholar 

  62. R. Harrington, M. Michel, J. Parise, D. Hausner, D. Strongin, Powder neutron diffraction studies of ferrihydrite, a nanocrystalline material. Geochim. Cosmochim. Acta 74(Suppl 1), A383–A383 (2010)

    Google Scholar 

  63. E. Murad, L.H. Bowen, G.J. Long, G.J. Quin, The influence of crystallinity on magnetic ordering in natural ferrihidrites. Clay Miner. 23, 161–173 (1988)

    Article  Google Scholar 

  64. C. Gilles, P. Bonville, K.K.W. Wong, S. Mann, Non-Langevin behaviour of the uncompensated magnetization in nanoparticles of artificial ferritin. Eur. Phys. J. B 17, 417–427 (2000)

    Article  ADS  Google Scholar 

  65. Y. Guyodo, S.K. Banerjee, R.L. Penn, D. Burleson, T.S. Berquó, T. Seda, P. Solheid, Magnetic properties of synthetic six-line ferrihydrite nanoparticles. Phys. Earth Plant. Int. 157, 222–233 (2006)

    Article  ADS  Google Scholar 

  66. G. De Geyter, R.E. Vandenberghe, L. Verdonck, G. Stoops, Mineralogy of Holocene bog iron ore in northern Belgium. Neues Jahrb. Miner. Abh. 153, 1–17 (1985)

    Google Scholar 

  67. U. Schwertmann, J. Friedl, A. Kyek, Formation and properties of a crystallinity series of synthetic ferrihydrites (2- to 6-line) and their relation to FeOOH forms. Clays Clay Miner. 52, 221–226 (2004)

    Article  Google Scholar 

  68. E. Murad, The Mössbauer spectrum of “well”-crystallized ferrihydrite. J. Magn. Magn. Mater. 74, 153–157 (1988)

    Article  ADS  Google Scholar 

  69. J. Chadwick, D.H. Jones, M.F. Thomas, G.J. Tatlock, R.W. Devenish, A Mössbauer study of ferrihydrite and aluminium substituted ferrihydrites. J. Magn. Magn. Mater. 61, 88–100 (1986)

    Article  ADS  Google Scholar 

  70. L. Carlson, U. Schwertmann, Natural ferrihydrites in surface deposits from Finland and their association with silica: Geochim. Cosmochim. Acta 45, 421–429 (1981)

    Article  ADS  Google Scholar 

  71. A.S. Campbell, U. Schwertmann, H. Stanjek, J. Friedl, A. Kyek, P.A. Campbell, Si incorporation into hematite by heating Si-ferrihydrite. Langmuir 18, 7804–7809 (2002)

    Article  Google Scholar 

  72. T.S. Berquó, S.K. Banerjee, R.G. Ford, R.L. Pichler, T. Penn, High crystallinity Si-ferrihydrite: An insight into its Néel temperature and size dependence of magnetic properties. J. Geophys. Res. 112, B02102 (2007). doi:10.1029/2006JB004583

    Article  ADS  Google Scholar 

  73. U. Schwertmann, F. Wagner, H. Knicker, Ferrihydrite–humic associations: magnetic hyperfine interactions. Soil Sci. Soc. Am. J. 69, 1009–1015 (2005)

    Article  Google Scholar 

  74. U. Schwertmann, Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Z. Pflanzenernähr. Düng. Bodenk. 195, 194–202 (1964)

    Article  Google Scholar 

  75. U. Schwertmann, D.G. Schulze, E. Murad, Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray-diffraction, and Mössbauer-spectroscopy. Soil Sci. Am. J. 46, 869–875 (1982)

    Article  Google Scholar 

  76. J.A. McKeague, J.H. Day, Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46, 13–22 (1966)

    Article  Google Scholar 

  77. U. Schwertmann, Use of oxalate for Fe extraction from soils. Can. J. Soil Sci. 53, 244–246 (1973)

    Article  Google Scholar 

  78. A.L. Walker, The effects of magnetite on oxalate-and dithionite-extractable iron. Soil Sci. Soc. Am. J. 47, 1022–1026 (1983)

    Article  Google Scholar 

  79. A.S. Campbell, U. Schwertmann, Evaluation of selective dissolution extractants in soil chemistry and mineralogy by differential X-ray diffraction. Clay Miner. 20, 515–519 (1985)

    Article  Google Scholar 

  80. J. Arocena, G. De Geyter, C. Landuydt, U. Schwertmann, Dissolution of soil iron oxides with ammonium oxalate: Comparison between bulk samples and thin sections. Pedologie XXXIX-3, 275–297 (1989)

    Google Scholar 

  81. F. van der Woude, Mössbauer Effect in α-Fe2O3. Phys. Status Solidi 17, 417–432 (1966)

    Article  Google Scholar 

  82. W. Kündig, H. Bömmel, G. Constabaris, R.H. Linquist, Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect. Phys. Rev. 142, 327–333 (1966)

    Article  ADS  Google Scholar 

  83. A.M. van der Kraan, Mössbauer effect studies of surface ions of ultrafine α-Fe2O3 particles. Phys. Status Solidi (a) 18, 215–226 (1973)

    Article  ADS  Google Scholar 

  84. T. Shinjo, M. Kiyama, N. Sugita, K. Watanabe, K. Takada, Surface magnetism of α- Fe2O3 by the Mössbauer spectroscopy. J. Magn. Magn. Mater. 35, 133–135 (1983)

    Article  ADS  Google Scholar 

  85. T. Yang, A. Krishnan, N. Benczer-Koller, G. Bayreuther, Surface magnetic hyperfine interactions in Fe2O3 determined by energy-resolved conversion-electron. Phys. Rev. Lett. 48, 1292–1295 (1982)

    Article  ADS  Google Scholar 

  86. C. Van Cromphaut, V.G. de Resende, E. De Grave, R.E. Vandenberghe, Surface effects in α-Fe2O3 nanoparticles studied by ILEEMS and TMS. Hyp. Interact. 191, 167–171 (2009)

    Article  ADS  Google Scholar 

  87. D.G. Rancourt, S.R. Julian, J.M. Daniels, Mössbauer characterization of very small superparamagnetic particles: Application to intra-zeolitic Fe2O3. J. Magn. Magn. 49, 305–316 (1985)

    ADS  Google Scholar 

  88. R.C. Nininger Jr, D. Schroeer, Mössbauer studies of the Morin transition in bulk and microcrystalline α-Fe2O3. J. Phys. Chem. Solids 39, 137–144 (1978)

    Article  ADS  Google Scholar 

  89. A.E. Verbeeck, E. De Grave, R.E. Vandenberghe, Effect of the particle morphology on the Mössbauer effect in α-Fe2O3. Hyp. Interact. 28, 639–642 (1986)

    Article  ADS  Google Scholar 

  90. E. De Grave, R.E. Vandenberghe, Mössbauer effect study of the spin structure in natural hematites. Phys. Chem. Miner. 17, 344–352 (1990)

    Article  ADS  Google Scholar 

  91. N. Amin, S. Arajs, Morin temperature of annealed submicronic α-F2O3 particles. Phys. Rev. B 35, 4810–4811 (1987)

    Article  ADS  Google Scholar 

  92. E. De Grave, L.H. Bowen, D.D. Amarasiriwardena, R.E. Vandenberghe, 57Fe Mössbauer effect study of highly substituted aluminum hematites: determination of the magnetic hyperfine field distributions. J. Magn. Magn. Mater. 72, 129–140 (1988)

    Article  ADS  Google Scholar 

  93. M.-Z. Dang, D.G. Rancourt, J.E. Dutrizac, G. Lamarche, R. Provencher, Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials. Hyp. Interact. 117, 271–319 (1998)

    Article  ADS  Google Scholar 

  94. J.F. Bengoa, M.S. Moreno, S.G. Marchetti, R.E. Vandenberghe, R.C. Mercader, Study of the Morin transition in pseudocubic α-Fe2O3 particles. Hyp. Interact. 161, 177–183 (2005)

    Article  ADS  Google Scholar 

  95. P.M.A. de Bakker, E. Grave, R.E. Vandenberghe, L.H. Bowen, R.J. Pollard, R.M. Persoons, Mössbauer study of the thermal decomposition of lepidocrocite and characterization of the decomposition products. Phys. Chem. Miner. 18, 131–143 (1991)

    Article  ADS  Google Scholar 

  96. E. Van San, E. De Grave, R.E. Vandenberghe, H.O. Desseyn, L. Datas, V. Barrón, A. Rousset, Study of Al-substituted hematites, prepared from thermal treatment of lepidocrocite. Phys. Chem. Miner. 28, 488–497 (2001)

    Article  ADS  Google Scholar 

  97. R.E. Vandenberghe, E. Van San, E. De Grave, G.M. Da Costa, About the Morin transition in hematite in relation with particle size and aluminium substitution. Czech J. Phys. 51, 663–675 (2001)

    Article  ADS  Google Scholar 

  98. U. Schwertmann, R.W. Fitzpatrick, R.M. Taylor, D.G. Lewis, The influence of aluminum on iron oxides: II. Preparation and properties of aluminum-substituted hematites. Clays Clay Miner. 27, 105–112 (1979)

    Article  Google Scholar 

  99. S.A. Fysh, P.E. Clark, Aluminium hematite: a Mössbauer study. Phys. Chem. Miner. 8, 257–267 (1982)

    Article  ADS  Google Scholar 

  100. E. De Grave, L.H. Bowen, S.B. Weed, Mössbauer study of aluminum-substituted hematites. J. Magn. Magn. Mater. 27, 98–108 (1982)

    Article  ADS  Google Scholar 

  101. E. De Grave, D. Chambaere, L.H. Bowen, Nature of the Morin transition in Al-substituted hematite. J. Magn. Magn. Mater. 30, 349–354 (1983)

    Article  ADS  Google Scholar 

  102. E. Murad, U. Schwertmann, Influence of Al substitution and crystal size on the room-temperature Mössbauer spectra of hematite. Clays Clay Miner. 34, 1–6 (1986)

    Article  Google Scholar 

  103. G.M. da Costa, E. Van San, E. De Grave, R.E. Vandenberghe, V. Barrón, L. Datas, Al hematites prepared by homogeneous precipitation of oxinates: material characterization and determination of the Morin transition. Phys. Chem. Miner. 29, 122–131 (2002)

    Article  ADS  Google Scholar 

  104. V. Baron, J. Gutzmer, H. Rundlof, R. Tellgren, Neutron powder diffraction study of Mn-bearing hematite, α-Fe2 − xMnxO3, in the range 0 ≤ x≤0.176. Solid State Sci. 7, 753–759 (2005)

    Article  ADS  Google Scholar 

  105. R.M. Cornell, R. Giovanoli, Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media. Clays Clay Miner. 35, 11–20 (1987)

    Article  Google Scholar 

  106. R.E. Vandenberghe, A.E. Verbeeck, E. De Grave, On the Morin transition in Mn-substituted hematite. J. Magn. Magn. Mater. 54–57, 898–900 (1986)

    Article  Google Scholar 

  107. G. Shirane, D.E. Cox, W.J. Takei, S.L. Ruby, A study of the magnetic properties of the FeTiO3-αFe2O3 system by neutron diffraction and the Mössbauer effect. J. Phys. Soc. Jpn. 17, 1598–1611 (1962)

    Article  ADS  Google Scholar 

  108. A.H. Muir Jr, R.M. Housley, R.W. Grant, M. Abdel-Gawad, M. Blander, Mössbauer spectroscopy of Moon samples. Science 167, 688–690 (1970)

    Article  ADS  Google Scholar 

  109. R.W. Grant, R.M. Housley, S. Geller, Hyperfine interactions of Fe2+ in ilmenite. Phys. Rev. B 5, 1700–1703 (1972)

    Article  ADS  Google Scholar 

  110. W. Kim, I.I.J. Park, C.S. Kim, Mössbauer study of magnetic structure of cation-deficient iron sulfide Fe0.92S. J. Appl. Phys. 105, 07D535–07D535-3 (2009)

    Article  Google Scholar 

  111. W.Q. Guo, S. Malus, D.H. Ryan, Z. Altounian, Crystal structure and cation distributions in the FeTi2O5–Fe2TiO5 solid solution series. J. Phys. Condens. Matter. 11, 6337–6346 (1999)

    Article  ADS  Google Scholar 

  112. L. Häggström, H. Annersten, T. Ericsson, R. Wäppling, W. Karner, S. Bjarman, Magnetic dipolar and electric quadrupolar effects on the Mössbauer spectra of magnetite above the Verwey transition. Hyp. Interact. 5, 201–214 (1978)

    Article  Google Scholar 

  113. H. Annersten, S.S. Hafner, Vacancy distribution in synthetic spinels of the series Fe3O4–γ-Fe2O3. Z. Kristallogr. 137, 321–340 (1973)

    Article  Google Scholar 

  114. A. Ramdani, J. Steinmetz, C. Gleitzer, J.M.D. Coey, J.M. Friedt, Perturbation de l’échange electronique rapide par des lacunes cationiques dans Fe3–x O4 (x ≤ 0.09). J. Phys. Chem. Solids 48, 217–228 (1987)

    Article  ADS  Google Scholar 

  115. C.I. Pearce, C.M.B. Henderson, N.D. Teiling, R.A.D. Pattrick, D.J. Vaughan, J.M. Charnock, E. Arenholz, F. Tuna, V.S. Coker, G. van der Laan, Iron site occupancies in magnetite-ulvöspinel solid solution: a new approach using X-ray magnetic circular dichroism. Am. Mineral. 95, 425–439 (2010)

    Article  Google Scholar 

  116. H. Tanaka, M. Kono, Mössbauer spectra of titanomagnetite: A reappraisal. J. Geomag. Geoelectr. 39, 463–475 (1987)

    Article  Google Scholar 

  117. H.H. Hamdeh, K. Barghout, J.O. Ho, P.M. Shand, L.L. Miller, A Môssbauer evaluation of cation distribution in titanomagnetites. J. Magn. Magn. Mater. 191, 72–78 (1999)

    Article  ADS  Google Scholar 

  118. R.S. Hargrove, W. Kündig, Mössbauer measurements of magnetite below the Verwey transition. Solid State Commun. 8, 303–308 (1970)

    Article  ADS  Google Scholar 

  119. Y. Miyahara, Impurity effects on the transition temperature of magnetite. J Phys. Soc. Jpn. 32, 629–634 (1972)

    Article  ADS  Google Scholar 

  120. V.A.M. Brabers, F. Waltz, H. Kronmuller, Impurity effects upon the Verwey transition in magnetite. Phys. Rev. B 58, 14163–14166 (1998)

    Article  ADS  Google Scholar 

  121. M.M. Hanzlik, N. Petersen, R. Keller, E. Schmidbauer, Electron microscopy and 57Fe Mössbauer spectra of 10 nm particles, intermediate in composition between Fe3O4–γ-Fe2O3, produced by bacteria. Geophys. Res. Lett. 23, 479–482 (1996)

    Article  ADS  Google Scholar 

  122. G.M. da Costa, E. De Grave, L.H. Bowen, P.M.A. de Bakker, R.E. Vandenberghe, The center shift in Mössbauer spectra of maghemite and aluminum maghemites. Clays Clay Miner. 42, 628–633 (1994)

    Article  Google Scholar 

  123. J.M.D. Coey, D. Khalafalla, Superparamagnetic γ-Fe2O3. Phys. Status Solidi (a) 11, 229–242 (1972)

    Article  ADS  Google Scholar 

  124. U. Schwertmann, Occurrence and formation of iron in various pedenvironments, in Iron in Soils and Clay Minerals, vol. 217, NATO ASI Series, Series C: Math. and Phys. Sci., ed. by J.W. Stucki, B.A. Goodman, U. Schwertmann (D.Reidel Publication, Dordrecht, 1988), pp. 267–308

    Chapter  Google Scholar 

  125. G.M. da Costa, C.H. Laurent, E. De Grave, R.E. Vandenberghe, A comprehensive Mössbauer study of highly-substituted aluminium maghemite. eds. by M.D. Dyar, C. McCammon, M.W. Schaefer, Mineral Spectroscopy: A Tribute to Roger G. Burns, The Geochemical Society (Special Publication 5, 1996) pp. 93–104

    Google Scholar 

  126. G.M. da Costa, E. De Grave, R.E. Vandenberghe, Mössbauer studies of maghemites and Al-substituted maghemites. Hyp. Interact. 117, 207–243 (1998)

    Article  ADS  Google Scholar 

  127. J.E.M. Allan, J.M.D. Coey, I.S. Sanders, U. Schwertmann, G. Friedrich, A. Wiechowski, An occurrence of a fully-oxidized natural titanomaghemite in basalt. Miner. Mag. 53, 299–304 (1989)

    Article  Google Scholar 

  128. W. Xu, D.R. Peacor, W.A. Dollase, R. Van Der Voo, R. Beaubouef, Transformation of titanomagnetite to titanomaghemite: A slow-step oxidation ordering process in MORB. Am. Mineral. 82, 1101–1110 (1997)

    Google Scholar 

  129. S. Collyer, N.W. Grimes, D.J. Vaughan, G. Longworth, Studies of the crystal structure and crystal chemistry of titanomaghemite. Am. Mineral. 73, 153–160 (1988)

    Google Scholar 

  130. E. Murad, R.M. Taylor, The Mössbauer spectra of hydroxycarbonate green rusts. Clay Miner. 19, 77–83 (1984)

    Article  Google Scholar 

  131. J.M.R. Génin, Ph Bauer, A.A. Olowe, D. Rézel, Mössbauer study of the kinetics of simulated corrosion process of iron in chlorinated aqueous solution around room temperature: the hyperfine structure of ferrous hydroxides and green rust I. Hyp. Interact. 29, 1355–1360 (1986)

    Article  ADS  Google Scholar 

  132. A.A. Olowe, J.M.R. Génin, Ph Bauer, Hyperfine interactions and structures of ferrous hydroxide and green rust II in sulfated aqueous media. Hyp. Interact. 41, 501–504 (1988)

    Article  ADS  Google Scholar 

  133. S.H. Drissi, Ph Refait, M. Abdelmoula, J.-M.R. Génin, Preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxycarbonate (green rust 1), Pourbaix diagram of iron in carbonate-containing aqueous media. Corros. Sci. 37, 2025–2041 (1995)

    Article  Google Scholar 

  134. C. Ruby, M. Abdelmoula, S. Naille, A. Renard, V. Khare, G. Ona-Nguema, G. Morin, J.M.R. Génin, Oxidation modes and thermodynamics of FeII−III oxyhydroxycarbonate green rust: dissolution-precipitation versus in situ deprotonation. Geochim. Cosmochim. Acta 74, 953–966 (2009)

    Article  ADS  Google Scholar 

  135. F. Trolard, J.M.R. Génin, M. Abdelmoula, G. Bourrié, B. Humbert, A.J. Herbillon, Identification of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies. Geochim. Cosmochim. Acta 61, 1107 (1997)

    Article  ADS  Google Scholar 

  136. M. Abdelmoula, F. Trolard, G. Bourrié, J.M.R. Génin, Evidence of Fe(II)-Fe(III) Green rust “Fougerite” mineral occurrence in hydromorphic soil and its transformation with depth. Hyp. Interact. 112, 235–238 (1998)

    Article  ADS  Google Scholar 

  137. F. Féder, F. Trolard, G. Klingelhöfer, G. Bourrié, In situ Mössbauer spectroscopy evidence for green rust (fougerite) in a gleysol and its mineralogical transformations with time and depth. Geochim. Cosmochim. Acta 69, 4463–4483 (2005)

    Article  ADS  Google Scholar 

  138. J.-M.R. Génin, O. Guérin, A.J. Herbillon, E. Kuzmann, S.J. Mills, G. Morin, G. Ona-Nguema, C. Ruby, C. Upadhyay, Redox topotactic reactions in FeII−III oxyhydroxycarbonate new minerals related to fougèrite in gleysols: “trébeurdenite and mössbauerite”. Hyp. Interact. 204(1–3), 71–81 (2012)

    Article  ADS  Google Scholar 

  139. B. Rusch, J.M.R. Génin, C. Ruby, M. Abdelmoula, P. Bonville, Ferrimagnetic properties of Fe(II-III) (oxy)hydoxycarbonate green rust. Solid State Sci. 10, 40 (2008)

    Article  ADS  Google Scholar 

  140. S. Hafner, M. Kalvius, The Mössbauer resonance of Fe in troilite and pyrrhotite. Z. Krist. 123, 443–458 (1966)

    Article  Google Scholar 

  141. L.F. Power, H.A. Fine, The iron-sulphur system. Part l. The structures and physical properties of the compounds of the low-temperature phase fields. Miner. Sci. Eng. 8, 106–128 (1976)

    Google Scholar 

  142. A.D. Elliot, Structure of pyrrhotite 5C (Fe9S10). Acta Cryst. B66, 271–279 (2010)

    Google Scholar 

  143. R. Gosselin, M.G. Townsend, R.J. Tremblay, A.H. Webster, Mössbauer effect in single-crystal Fe1−x S. J. Solid State Chem. 17, 43–48 (1976)

    Article  ADS  Google Scholar 

  144. M.G. Townsend, A.H. Webster, J.L. Harwood, H. Roux-Buisson, Ferrimagnetic transition in Fe0.9S—Magnetic, thermodynamic and kinetic aspects. J. Phys. Chem. Solids 40, 183–189 (1979)

    Article  ADS  Google Scholar 

  145. V.P. Gupta, A.K. Singh, K. Chandra, S.K. Jaireth, Investigations of pyrrhotites of Indian ore deposits. in ED Proceedings of the Indian Science Academy, International Conferences on the Application of the Mössbauer Effect, Jaipur 1981, (Indian Nat Science Academy, New Delhi, 1982), pp. 863–865

    Google Scholar 

  146. M. Saporoschenko, C.C. Hinckley, H. Twardowska, G.V. Smith, O. Zahraa, R.H. Shiley, K.L. Konopka, Mössbauer study of synthetic pyrrhotite. in ED Proceedings of the Indian Science Academy, International Conference on the Application of the Mössbauer Effect, Jaipur 1981, (Indian National Science Academy, New Delhi, 1982), pp. 869–871

    Google Scholar 

  147. C. Jeandey, J.L. Oddou, J.L. Mattei, G. Fillion, Mössbauer investigation of the pyrrhotite at low temperature. Solid State Commun. 78, 195–198 (1991)

    Article  ADS  Google Scholar 

  148. R.E. Vandenberghe, E. De Grave, P.M.A. de Bakker, M. Krs, J.J. Hus, Mössbauer study of natural greigite. Hyp. Interact. 68, 319–322 (1991)

    Article  ADS  Google Scholar 

  149. V. Hoffmann, H. Stanjek, E. Murad, Mineralogical, magnetic and Mössbauer data of smythite (Fe9S11). Studia Geophys. Geod. 37, 366–380 (1993)

    Article  Google Scholar 

  150. J.M.D. Coey, M.R. Spender, A.H. Morrish, Magnetic structure of spinel Fe3S4. Solid State Commun. 8, 1605–1608 (1970)

    Article  ADS  Google Scholar 

  151. L. Chang, B.D. Rainford, J.R. Stewart, C. Ritter, A.P. Roberts, Y. Tang, Q. Chen, Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction. J. Geophys. Res. 114, B07101 (2009). doi:10.1029/2008JB006260

    Article  ADS  Google Scholar 

  152. A.P. Roberts, L. Chang, C.J. Rowan, C.-S. Horng, F. Florindo, Magnetic properties of sedimentary greigite (Fe3S4): An update. Rev. Geophys. 49, RG1002 (2011). doi:10.1029/2010RG000336

    Article  ADS  Google Scholar 

  153. J.A. Morice, L.V.C. Rees, D.T. Rickard, Mössbauer studies of iron sulphides. J. Inorg. Nucl. Chem. 31, 3797–3802 (1969)

    Article  Google Scholar 

  154. D.J. Vaughan, M.S. Ridout, Mössbauer studies of some sulphide minerals. J. Inorg. Nucl. Chem. 33, 741–746 (1971)

    Article  Google Scholar 

  155. O. Knop, C.-H. Huang, F.W.D. Woodhams, Chalcogenides of the transition elements. VII. A Mössbauer study of pentlandite. Am. Mineral. 55, 115–1130 (1970)

    Google Scholar 

  156. P.L. Wincott, D.J. Vaughan, Spectroscopic studies of sulfides. Rev. Mineral. 61, 181–229 (2006)

    Article  Google Scholar 

  157. F.C. Hawthorne, S.V. Krivovichev, P.C. Burns, The crystal chemistry of sulfate minerals. Rev. Mineral. Geochem. 40, 1–112 (2000)

    Article  Google Scholar 

  158. J.G. Stevens, A.M. Khasanov, J.W. Miller, H. Pollak, Z. Li (eds.), Mössbauer Minerals Handbook (Mössbauer Effect Data Center, Asheville, 1998)

    Google Scholar 

  159. V.A. O’Connor, Comparative crystal chemistry of hydrous iron sulfates from different terrestrial environments. Ph.D thesis, Mount Holyoke College, South Hadley, (2005)

    Google Scholar 

  160. M.D. Dyar, D.G. Agresti, M.W. Schaefer, C.A. Grant, E.C. Sklute, Mössbauer spectroscopy of earth and planetary materials. An. Rev. Earth Planetary Sci. 34, 83–125 (2006)

    Article  ADS  Google Scholar 

  161. A. Ertl, M.D. Dyar, J.M. Hughes, F. Brandstätter, M.E.M. Gunther, R.C. Peterson, Pertlikite, a new tetragonal Mg-rich member of the voltaite group from Madeni Zakh. Iran. Can. Mineral. 46, 661–669 (2008)

    Article  Google Scholar 

  162. A. Van Alboom, V.G. De Resende, E. De Grave, J.A.M. Gómez, Hyperfine interactions in szomolnokite (FeSO4·H2O). J. Molec. Struct. 924–926, 448–456 (2009)

    Article  Google Scholar 

  163. P.P. Gil, A. Pesquera, F. Velasco, X-ray diffraction, infrared and Mössbauer studies of Fe-rich carbonates. Eur. J. Miner. 4, 521–526 (1992)

    Google Scholar 

  164. V.I. Goldanskii, E.F. Makarov, I.P. Suzdalev, I.A. Vinogradov, Quantitative test of the vibrational anisotropy origin of the asymmetry of quadrupole Mössbauer doublets. Phys. Rev. Lett. 20, 137–140 (1968)

    Article  ADS  Google Scholar 

  165. T. Ericsson, R. Wäppling, Texture effects in 3/2-1/2 Mössbauer spectra. J. Phys. C6(37), 719–726 (1976)

    Google Scholar 

  166. K.K.P. Srivastava, A Mössbauer study of slow spin relaxation of paramagnetic Fe2+ in MgCO3. J. Phys. C. Solid State Phys. 16, 1137–1139 (1983)

    Article  ADS  Google Scholar 

  167. E. De Grave, R. Vochten, An 57Fe mössbauer effect study of ankerite. Phys. Chem. Miner. 12, 108–113 (1985)

    Article  ADS  Google Scholar 

  168. E. De Grave, 57Fe Mössbauer effect in ankerite: Study of the electronic relaxation. Solid State Commun. 60, 541–544 (1986)

    Article  ADS  Google Scholar 

  169. G. Hilscher, P. Rogl, J. Zemann, T. Ntaflos, Low-temperature magnetic investigation of ankerite. Eur. J. Miner. 17, 103–105 (2005)

    Article  Google Scholar 

  170. R.J. Reeder, W.A. Dollase, Structural variation in the dolomite-ankerite solid-solution series: An X-ray, Mössbauer, and TEM study. Am Miner. 74, 1159–1167 (1989)

    Google Scholar 

  171. M.W. Schaefer, Measurements of iron(Ill)-rich fayalites. Nature 303, 325–327 (1983)

    Article  ADS  Google Scholar 

  172. J.F. Duncan, J.H. Johnston, The determination of the cation distribution in olivine from single crystal Mössbauer studies. Aust. J. Chem. 26, 231–239 (1973)

    Article  Google Scholar 

  173. R. Santoro, R. Newnham, S. Nomura, Magnetic properties of Mn2SiO4 and Fe2SiO4. J. Phys. Chem. Solids 27, 655–666 (1966)

    Article  ADS  Google Scholar 

  174. W. Lottermoser, K. Forcher, G. Amthauer, H. Fuess, Powder- and single crystal Mössbauer spectroscopy on synthetic fayalite. J. Phys. Chem. Miner. 22, 259–267 (1995)

    ADS  Google Scholar 

  175. F. Belley, E.C. Ferré, F. Martín-Hernández, M.J. Jackson, M.D. Dyar, E.J. Catlos, The magnetic properties of natural and synthetic (Fex, Mg1 − x)2SiO4 olivines. Earth and Planet. Sci. Lett. 284, 516–526 (2009)

    Google Scholar 

  176. W. Kündig, J.A. Cape, R.H. Lindquist, G. Constabaris, Some magnetic properties of Fe2SiO4 from 4 K to 300 K. J. Appl. Phys. 38, 947–948 (1967)

    Article  ADS  Google Scholar 

  177. S.S. Hafner, J. Stanek, M. Stanek, 57Fe hyperfine interactions in the magnetic phase of fayalite, Fe2SiO4. J. Phys. Chem. Solids 51, 203–208 (1990)

    Article  ADS  Google Scholar 

  178. X. Kan, J.M.D. Coey, Mössbauer spectra, magnetic and electrical properties of laihunite, a mixed-valence iron olivine mineral. Am. Mineral. 70, 567–580 (1985)

    Google Scholar 

  179. M.W. Schaefer, Site occupancy and two-phase character of “ferrifayalite”. Am. Mineral. 70, 729–736 (1985)

    Google Scholar 

  180. G. Amthauer, H. Annersten, S.S. Hafner, The Mössbauer spectrum of 57Fe in silicate garnets. Zeit. Kristallogr. 143, 14–55 (1976)

    Google Scholar 

  181. E. Murad, F.E. Wagner, The Mössbauer spectrum of almandine. Phys. Chem. Miner. 14, 264–269 (1987)

    Article  ADS  Google Scholar 

  182. E. Murad, Magnetic ordering in andradite. Am. Mineral. 69, 722–724 (1984)

    Google Scholar 

  183. K.B. Schwartz, D.A. Nolet, R.G. Burns, Mössbauer spectroscopy and crystal chemistry of natural Fe-Ti garnets. Am. Mineral. 65, 142–153 (1980)

    Google Scholar 

  184. G.M. Bancroft, A.G. Maddock, R.G. Burns, Application of the Mössbauer effect of silicate mineralogy: I. Iron silicates of known crystal structure. Geochim. Cosmochim. Acta 31, 831–834 (1967)

    Article  Google Scholar 

  185. W.A. Dollase, Mössbauer spectra and iron distribution in the epidote-group minerals. Z. Krist. 138, 41–63 (1973)

    Article  Google Scholar 

  186. K.T. Fehr, S. Heuss-Assbichler, Intracrystalline equilibria and immiscibility along the join clinozoisite-epidote. An experimental and 57Fe Mössbauer study. N. Jb. Min. Abh. 172, 43–67 (1997)

    Google Scholar 

  187. M. Grodzicki, S. Heuss-Assbichler, G. Amthauer, Mössbauer investigations and molecular orbital calculations. Phys. Chem. Miner. 28, 675–681 (2001)

    Article  ADS  Google Scholar 

  188. A.K. Dzhemai, Distribution of cations in structures of iron magnesia silicates. Staurolites. V.A. Glebovitskii, ed. by in Raspred Kationov Termodin Zhelezo-Magrez Tverd Rastvorov Silik. (Izv. Nauka, Leningrad Old, Leningrad 1978), pp. 136–152

    Google Scholar 

  189. M.D. Dyar, C.L. Perry, C.R. Rebbert, B.L. Dutrow, M.J. Holdway, H.M. Lang, Mössbauer spectroscopy of synthetic and naturally occurring staurolite. Am. Mineral. 76, 27–41 (1991)

    Google Scholar 

  190. M. Akasaka, M. Nagashima, K. Makino, H. Ohashi, Distribution of Fe3 + in a synthetic (Ca, Na)2(Mg, Fe3+)Si2O7–melilite: 57Fe Mössbauer and X-ray Rietveld studies. J. Mineral. Petrol. Sci. 100, 229–236 (2005)

    Article  Google Scholar 

  191. B. Ghazi-Bayat, M. Behruzi, F.J. Litterst, W. Lottermoser, G. Amthauer, Crystallographic phase transition and valence fluctuation in synthetic Mn-bearing ilvaite CaFe2+2–xMnxFe3+[Si2O7/O/(OH)]. Phys. Chem. Miner. 18 491–496 (1992)

    Google Scholar 

  192. F.J. Litterst, G. Amthauer, Electron delocalization in ilvaite, a reinterpretation of its 57Fe Mössbauer spectrum. Phys. Chem. Miner. 10, 250–255 (1984)

    Article  ADS  Google Scholar 

  193. C.R. Dotson, B.J. Evans, The effects of chemical composition on electron delocalization and magnetic ordering in ilvaite, Ca[Fe2+,Fe3+][Fe2+]Si2O7O(OH). J. Appl. Phys. 85, 5235–5236 (1999)

    Google Scholar 

  194. D.A. Nolet, Electron delocalization observed in the Mössbauer spectrum of ilvaite. Solid State Commun. 28, 719–722 (1978)

    Article  ADS  Google Scholar 

  195. D.A. Nolet, R.G. Burns, Ilvaite: A study of temperature dependent electron delocalization by the Mössbauer effect. Phys. Chem. Miner. 4, 221–234 (1979)

    Article  ADS  Google Scholar 

  196. N. Zotov, W. Kockelman, S.D. Jacobsen, I. Mitov, D. Paneva, R.D. Vassileva, I.K. Bonev, Structure and cation ordering in manganilvaite: a combined X-ray diffraction, neutron diffraction, and Mössbauer study. Can. Mineral. 43, 1043–1053 (2005)

    Article  Google Scholar 

  197. G. Amthauer, W. Lottermoser, G. Redhammer, G. Tippelt, Mössbauer studies of selected synthetic silicates. Hyp. Interact. 113, 219–248 (1998)

    Article  ADS  Google Scholar 

  198. D.C. Price, E.R. Vance, G. Smith, A. Edgar, B.L. Dickson, Mössbauer effect studies on beryl. J. Phys. C6(37), 811–816 (1976)

    Google Scholar 

  199. R.R. Viana, G.M. da Costa, E. De Grave, H. Jordt-Evangelista, W.B. Stern, Characterization of beryl (aquamarine variety) by Mössbauer spectroscopy. Phys. Chem. Miner. 29, 78–86 (2002)

    Article  ADS  Google Scholar 

  200. J.F. Duncan, J.H. Johnston, Single crystal 57Fe Mössbauer studies of the site positions in cordierite. Aust. J. Chem. 27, 249–258 (1974)

    Article  Google Scholar 

  201. C.A. Geiger, T. Armbruster, V. Khomenko, S. Quartieri, Cordierite I: The coordination of Fe2+. Am. Mineral. 85, 1255–1264 (2000)

    Google Scholar 

  202. R.G. Burns, Mixed valencies and site occupancies of iron in silicate minerals from Mössbauer spectroscopy. Can. J. Spectr. 17, 51–59 (1972)

    ADS  Google Scholar 

  203. Y. Fuchs, M. Lagache, J. Linares, R. Maury, F. Varret, Mössbauer and optical spectrometry of selected schorl-dravite tourmalines. Hyperfine Interact. 96, 245–258 (1995)

    Article  ADS  Google Scholar 

  204. A. Pieczka, J. Kraczka, W. Zabinski, Mössbauer spectra of Fe3+-poor schorls: reinterpretation on the basis of the ordered structure model. J. Czech Geol. Soc. 43, 69–74 (1998)

    Google Scholar 

  205. G.M. da Costa, C. Casteneda, N.S. Gomes, N.S. Pedrosa-Soares, C.M. Santana, On the analysis of the Mössbauer spectra of tourmalines. Hyp. Interact. 2, 29–34 (1997)

    Google Scholar 

  206. M.D. Dyar, M.E. Taylor, T.M. Lutz, C.A. Francis, C.V. Guidotti, M. Wise, Inclusive chemical characterization of tourmaline: Mössbauer study of Fe valence site occupancy. Am. Mineral. 83, 848–864 (1998)

    Google Scholar 

  207. S.G. Eeckhout, C. Corteel, E. Van Coster, E. De Grave, P. De Paepe, Crystal-chemical characterization of tourmalines from the English Lake District: Electron-microprobe analyses and Mössbauer spectroscopy. Am. Mineral. 89, 1743–1751 (2004)

    Google Scholar 

  208. B.J. Evans, S. Ghose, S.S. Hafner, Hyperfine splitting of 57Fe and Mg-Fe order-disorder in orthopyroxenes (MgSiO3–FeSiO3 solid solution). J. Geol. 75, 306–322 (1967)

    Article  ADS  Google Scholar 

  209. M.D. Dyar, R.L. Klima, D. Lindsley, C.M. Pieters, Effects of differential recoil-free fraction on ordering and site occupancies in Mössbauer spectroscopy of orthopyroxenes. Am. Mineral. 92, 424–428 (2007)

    Article  Google Scholar 

  210. S.G. Eeckhout, E. De Grave, C.A. McCammon, R. Vochten, Temperature dependence of the hyperfine parameters in synthetic P21/c Mg-Fe pyroxenes along the MgSiO3-FeSiO3 join. Am. Mineral. 85, 943–952 (2000)

    Google Scholar 

  211. G.M. Bancroft, P.G.L. Williams, R.G. Burns, Mössbauer spectra of minerals along the diopside—hedenbergite tie line. Am. Mineral. 56, 1617–1625 (1971)

    Google Scholar 

  212. S.G. Eeckhout, E. De Grave, 57Fe Mössbauer-effect studies of Ca-rich, Fe-bearing clinopyroxenes: Part I. Paramagnetic spectra of magnesian hedenbergite. Am. Mineral. 88, 1128–1137 (2003)

    Google Scholar 

  213. E. De Grave, S.G. Eeckhout, 57Fe Mössbauer-effect studies of Ca-rich, Fe-bearing clino-pyroxenes: Part III Diopside. Am. Mineral. 88, 1145–1152 (2003)

    Google Scholar 

  214. E. Dowty, D.H. Lindslay, Mössbauer spectra of synthetic hedenbergite-ferrosilite pyroxenes. Am. Mineral. 58, 850–868 (1973)

    Google Scholar 

  215. L.P. Aldridge, G.M. Bancroft, M.E. Fleet, C.T. Herzberg, Omphacite studies; II, Mössbauer spectra of C2/c and P2/n omphacites. Am. Mineral. 63, 1107–1115 (1978)

    Google Scholar 

  216. E. De Grave, A. Van Alboom, S.G. Eeckhout, Electronic and magnetic properties of a natural aegirine as observed from its Mössbauer spectra. Phys. Chem. Miner. 25, 378–388 (1998)

    Article  ADS  Google Scholar 

  217. W.R. Nelson, D.T. Griffen, Crystal chemistry of Zn-rich rhodonite (“fowlerite”). Am. Mineral. 90, 969–983 (2005)

    Article  Google Scholar 

  218. D.T. Griffen, W.R. Nelson, Mössbauer spectroscopy of Zn-poor and Zn-rich rhodonite. Am. Mineral. 92, 1486–1491 (2007)

    Article  Google Scholar 

  219. F.A. Seifert, D. Virgo, Kinetics of the Fe2+-Mg, order-disorder reaction in anthophyllites: quantitative cooling rates. Science 188, 1107–1109 (1975)

    Article  ADS  Google Scholar 

  220. G.M. Bancroft, R.G. Burns, A.G. Maddock, Determination of cation distribution in the cummingtonite-grunerite series by Mössbauer spectra. Am. Mineral. 52, 1009–1026 (1967)

    Google Scholar 

  221. G.M. Bancroft, A.G. Maddock, Cation distribution in anthophyllite from Mössbauer and infra-red spectroscopy. Nature 212, 913–915 (1966)

    Article  ADS  Google Scholar 

  222. M. Schindler, E. Sokolova, Y. Abdu, F.C. Hawthorne, B.W. Evans, K. Ishida, The crystal chemistry of the gedrite-group amphiboles. I. Crystal structure and site populations. Miner. Mag. 72, 703–730 (2008)

    Article  Google Scholar 

  223. F.S. Spears, The gedrite-anthophyllite solvus and the composition limits of orthoamphibole from the Post Pond Volcanics, Vermont. Am. Mineral. 65, 1103–1118 (1980)

    Google Scholar 

  224. A.D. Law, E.J.W. Whittaker, Studies of the orthoamphiboles.1. The Mössbauer and infrared spectra of holmquistite. Bull. Mineral. 104, 381–386 (1981)

    Google Scholar 

  225. R.G. Burns, C. Greaves, Correlations of infrared and Mössbauer site population measurements of actinolites. Am. Mineral. 56, 2010–2033 (1971)

    Google Scholar 

  226. D.S. Goldman, A reevaluation of the Mössbauer spectroscopy of calcic amphiboles. Am. Mineral. 64, 109–118 (1979)

    Google Scholar 

  227. G.M. Bancroft, R.G. Burns, A.J. Stone, Applications of the Mössbauer effect to silicate mineralogy. II. Iron silicates of unknown and complex crystal structures. Geochim. Cosmochim. Acta 32, 547–559 (1968)

    Article  ADS  Google Scholar 

  228. G.M. Bancroft, R.G. Burns, Mössbauer and absorption spectral study of alkali amphiboles. Mineral. Soc. Am. Spec. Pap. 2, 137–148 (1969)

    Google Scholar 

  229. D.G. Rancourt, Mössbauer spectroscopy of minerals: I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole distributions. Phys. Chem. Miner. 21, 244–249 (1994)

    Article  ADS  Google Scholar 

  230. J. De Grave, P. De Paepe, E. De Grave, R. Vochten, S.G. Eeckhout, Mineralogical and Mössbauer spectroscopic study of a diopside occurring in the marbles of Andranondamo, southern Madagascar. Am. Mineral. 87, 132–141 (2002)

    Google Scholar 

  231. A. Van Alboom, E. De Grave, Temperature dependence of the 57Fe Mössbauer parameters in riebeckite. Phys. Chem. Miner. 23, 377–386 (1996)

    Article  ADS  Google Scholar 

  232. R.G. Burns, M.D. Dyar, Crystal chemistry and Mössbauer spectra of babingtonite. Am. Mineral. 76, 892–899 (1991)

    Google Scholar 

  233. G. Amthauer, K. Langer, M. Schliestedt, Thermally activated electron delocalization in deerite. Phys. Chem. Miner. 6, 19–30 (1980)

    Article  ADS  Google Scholar 

  234. E. Murad, U. Wagner, Mössbauer spectra of kaolinite, halloysite and the firing products of kaolinite: new results and a reappraisal of published work. N. Jb Miner. Abh. 162, 281–309 (1991)

    Google Scholar 

  235. I. Rozenson, E.R. Bauminger, L. Heller-Kallai, Mössbauer spectra of iron in 1:1 phyllosilicates. Am. Mineral. 64, 893–901 (1979)

    Google Scholar 

  236. D.S. O’Hanley, M.D. Dyar, The composition of lizardite 1 T and the formation of magnetite in serpentinite. Am. Mineral. 78, 391–404 (1993)

    Google Scholar 

  237. J.M.D. Coey, A. Moukarika, C.M. McDonagh, Electron hopping in cronstedtite. Solid State Commun. 41, 797–800 (1982)

    Article  ADS  Google Scholar 

  238. O. Ballet, J.M.D. Coey, Greenalite—A clay showing two-dimensional magnetic order. J. Phys. C6(39), 765–766 (1978)

    Google Scholar 

  239. K.J.D. Mackenzie, R.M. Berezowski, Thermal and Mössbauer studies of iron-containing hydrous silicates. V. Berthierine. Thermochimica Acta 74, 291–312 (1984)

    Google Scholar 

  240. J.M.D. Coey, Mössbauer spectroscopy of silicate minerals, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 1, ed. by G.J. Long (Plenum, New York, 1984), pp. 443–509

    Google Scholar 

  241. J.H. Johnston, C.M. Cardile, Iron substitution in montmorillonite, illite and glauconite by 57Fe Mössbauer spectroscopy. Clays Clay Miner. 35, 170–176 (1987)

    Article  Google Scholar 

  242. E. Murad, J. Cashion, Mössbauer spectroscopy of environmental materials and their industrial utilization (Kluwer, Boston, 2004)

    Book  Google Scholar 

  243. E. Murad, U. Wagner, Mössbauer spectrum of illite. Clay Miner. 29, 1–10 (1994)

    Article  Google Scholar 

  244. E. De Grave, J. Vandenbruwaene, E. Elewaut, An 57Fe Mössbauer effect study on glauconites from different locations in Belgium and northern France. Clay Miner. 20, 171–179 (1985)

    Article  Google Scholar 

  245. L.H. Bowen, E. De Grave, D.A. Reid, R.C. Graham, S.B. Edinger, Mössbauer study of a California desert celadonite and its pedogenically-related smectite. Phys. Chem. Miner. 16, 697–703 (1989)

    Article  ADS  Google Scholar 

  246. J.M.D. Coey, T. Bakas, S. Guggenheim, Mössbauer spectra of minnesotaite and ferrous talc. Am. Mineral. 76, 1905–1909 (1991)

    Google Scholar 

  247. O. Ballet, J.M.D. Coey, Magnetic properties of sheet silicates; 2:1layer minerals. Phys. Chem. Miner. 8, 218–229 (1982)

    Article  ADS  Google Scholar 

  248. C. Blaauw, G. Stroink, W. Leiper, Mössbauer analysis of talc and chlorite. J. Phys. C141, 411–412 (1980)

    Google Scholar 

  249. M.D. Dyar, R.G. Burns, Mössbauer spectral study of ferriginous one-layer trioctahedral micas. Am. Mineral. 71, 955–965 (1986)

    Google Scholar 

  250. M.D. Dyar, A review of Mössbauer data on trioctahdral micas: Evidence of tetrahedral Fe3+ and cation ordering. Am. Mineral. 72, 102–112 (1987)

    Google Scholar 

  251. E. De Grave, J. Vandenbruwaene, M. Van Bockstael, Mössbauer spectroscopic analysis of chlorite. Phys. Chem. Miner. 15, 173–180 (1987)

    Article  ADS  Google Scholar 

  252. S.G. Eeckhout, E. De Grave, R. Vochten, N.M. Blaton, Mössbauer effect study of anapaite, Ca2Fe2+(PO4)2.4H2O, and of its oxidation products. Phys. Chem. Minerals 26, 506–512 (1999)

    Article  ADS  Google Scholar 

  253. G.M. da Costa, R. Scholz, J. Karfunkel, V. Bermanec, M.L.S.C. Chavez, 57Fe-Mössbauer spectroscopy on natural eosphorite-childrenite-ernstite samples. Phys. Chem. Miner. 31, 714–720 (2005)

    Article  Google Scholar 

  254. R. Vochten, E. De Grave, Mössbauer- and infrared spectroscopic characterization of ferristrunzite from Blaton, Belgium. N. Jb. Miner. Mh. 176–190 (1990)

    Google Scholar 

  255. R. Vochten, E. De Grave, K. Van Springel, L. Van Haverbeke, Mineralogical and Mössbauer spectroscopic study of some strunzite varieties of the Silbergrube, Waidhaus, Oberpfalz, Germany. N. Jb. Mineral. Mh. 11–25 (1995)

    Google Scholar 

  256. R. Van Tassel, E. De Grave, Ferrostrunzite from Arnsberg, Sauerland, Germany. N. Jb. Miner. Mh. 207–212 (1992)

    Google Scholar 

  257. U. Gonser, R.W. Grant, Determination of spin directions and electric field gradient axis in vivianite by polarized recoil-free γ-rays. Phys. Stat. Sol. 21, 331–342 (1967)

    Article  ADS  Google Scholar 

  258. J.R. Forsyth, C.E. Johnston, C. Wilkinson, The magnetic structure of vivianite, Fe3(PO4)2.8H2O. J. Phys. C: Solid State Phys. 3, 1127–1139 (1970)

    Article  ADS  Google Scholar 

  259. E. De Grave, 57Fe-Mössbauerspectroscopie: fundamentele bijdragen en praktische toepassingen in de fysika, de mineralogie en de technologie. (Thesis Hoger Aggregaat, University of Gent) 1983

    Google Scholar 

  260. E. De Grave, R. Vochten, M. Desseyn, D. Chambaere, Analysis of some oxidized vivianites. J. Phys. (Paris) Colloq. 41, 407–408 (1980)

    Google Scholar 

  261. C.A. McCammon, R.G. Burns, The oxidation mechanism of vivianite as studied by Mössbauer spectroscopy. Am. Mineral. 65, 361–366 (1980)

    Google Scholar 

  262. J.L. Dormann, M. Gaspérin, J.F. Poullen, Etude structural de la séquence d’oxydation de la vivianite Fe3(PO4)2.8H2O. Bull. Minér. 105, 147–160 (1982)

    Google Scholar 

  263. L. Aldon, A. Perea, M. Womes, C.M. Ionica-Bousquet, J.-C. Jumas, Determination of the Lamb-Mössbauer fractions of of LiFePO4 and FePO4 for electrochemical in situ and operando measurements in Li-ion batteries. J. Solid State Chem. 183, 218–222 (2010)

    Article  ADS  Google Scholar 

  264. A. Van Alboom, E. De Grave, M. Wolfahrt-Mehrens, Temperature dependence of the Fe2+ Mössbauer parameters in triphylite (LiFePO4). Am. Mineral. 96, 408–416 (2011)

    Article  Google Scholar 

  265. A. Yamada, S. Chung, Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as possible 4 V cathode materials for lithium batteries. J. Electrochem. Soc. 148, A960–A967 (2001)

    Article  ADS  Google Scholar 

  266. T.H. Fehr, R. Hochleitner, A. Laumann, E. Schmidbauer, J. Schneider, Mineralogy, Mössbauer spectroscopy and electrical conductivity of heterosite (Fe3+,Mn3+)PO4. Phys. Chem. Miner. 37, 179–189 (2010)

    Article  ADS  Google Scholar 

  267. V.G. de Resende, G.M. da Costa, E. De Grave, A. Van Alboom, Mössbauer spectroscopic study of synthetic leucophosphite, KFe2(PO4)2(OH).2H2O. Am. Mineral. 93, 483–498 (2008)

    Article  Google Scholar 

  268. G. Le Caër, J.M. Dubois, H. Fisher, U. Gonser, H.G. Wagner, On the validity of 57Fe hyperfine field distribution calculations from Mössbauer spectra of magnetic amorphous alloys. Nucl. Instrum. Meth. Phys. Res. B 5, 25–33 (1984)

    Article  ADS  Google Scholar 

  269. R.E. Vandenberghe, E. Van Ranst, E. De Grave, Mössbauer study of a South African Griffin Farmhill soil profile. ICAME 2005, Montpellier, Book of Abstracts (2005)

    Google Scholar 

  270. E. Van Ranst, M. Dumon, A.R. Tolossa, J-Th Cornelis, G. Stoops, R.E. Vandenberghe, R.J. Deckers, Revisiting ferrolysis processes in the formation of Planosols for rationalizing the soils with stagnic properties in WRB. Geoderma 163, 265–274 (2011)

    Article  Google Scholar 

  271. E. Banks, E. Kostiner, G.K. Wertheim, Mössbauer effect in MnFeO3. J. Chem. Phys. 45, 1189–1191 (1966)

    Article  ADS  Google Scholar 

  272. S.N. de Medeiros, A. Luciano, L.F. Cótica, I.A. Santos, A. Paesano Jr, J.B.M. da Cunha, Structural and magnetic characterization of the ball-milled α-Fe2O3 –Mn2O3 and α-Fe–Mn2O3 systems. J. Magn. Magn. Mater. 281, 227–233 (2004)

    Article  ADS  Google Scholar 

  273. J.M. Han, J.J. Hus, R. Paepe, R.E. Vandenberghe, T.S. Liu, The rock magnetic properties of the Malan and Lishi formations in the loess plateau of China, in Loess, Environment and Global Change, ed. by Liu Tungsheng (Science Press, Beijing, 1991), pp. 30–47

    Google Scholar 

  274. R.E. Vandenberghe, E. De Grave, J.J. Hus, J. Han, Characterization of Chinese loess and associated palaeosol by Mössbauer spectroscopy. Hyp. Interact. 70, 977–980 (1992)

    Article  ADS  Google Scholar 

  275. R.E. Vandenberghe, J.J. Hus, E. De Grave, Evidence from Mössbauer spectroscopy of neo-formation of magnetite/maghemite in the soils of loess/palaeosol sequences in China. Hyp. Interact. 117, 359–369 (1998)

    Article  ADS  Google Scholar 

  276. R.C. Mercader, F.R. Sives, P.A. Imbellone, R.E. Vandenberghe, Magnetic and Mössbauer studies of quaternary Argentine loessic soils and paleosols. Hyp. Interact. 161, 43–53 (2005)

    Article  ADS  Google Scholar 

  277. C. Algoe, G. Stoops, R.E. Vandenberghe, E. Van Ranst, Selective dissolution of Fe-Ti oxides—Extractable iron as a criterion for andic properties revisited. Catena 92, 49–54 (2011)

    Article  Google Scholar 

  278. E. De Grave, G.M. Da Costa, L.H. Bowen, C.A. Barrero, R.E. Vandenberghe, Characterization of soil-related analogs by applied-field 57Mössbauer spectroscopy. Hyp. Interact. 117, 245–270 (1998)

    Article  ADS  Google Scholar 

  279. R.B. Scorzelli, Application of the Mössbauer effect to the study of meteorites—A review. Hyp. Interact. 66, 249–257 (1991)

    Article  ADS  Google Scholar 

  280. R.B. Scorzelli, Meteorites: Messengers from the outer space. J. Braz. Chem. Soc. 19, 226–231 (2008)

    Article  Google Scholar 

  281. J. Danon, R.B. Scorzelli, I. Souza-Azevedo, J. Laugier, A. Chamberod, Santa Catharina meteorite and phase composition of irradiated Fe–Ni Invar alloys. Nature 284, 537–538 (1980)

    Article  ADS  Google Scholar 

  282. R.B. Scorzelli, I.S. Azevedo, J. Danon, M.A. Meyers, Mössbauer study of shock-induced effects in the ordered alloy Fe50Ni50 in meteorites. J. Phys. F. Met. Phys. 17, 1993–1997 (1987)

    Article  ADS  Google Scholar 

  283. R.B. Scorzelli, J. Danon, Mössbauer spectroscopy and X-ray diffraction studies of Fe–Ni order-disorder processes in a 35 % Ni meteorite (Santa Catharina). Phys. Scr. 32, 143–148 (1985)

    Article  ADS  Google Scholar 

  284. E. De Grave, R.E. Vandenberghe, P.M.A. De Bakker, A. Van Alboom, R. Vochten, R. Van Tassel, Temperature dependence of the Mössbauer parameters of the FeNi phases in the Santha Catharina meteorite. Hyp. Interact. 70, 1009–1012 (1992)

    Article  ADS  Google Scholar 

  285. E. De Grave, R.J. Pollard, R.E. Vandenberghe, P.M.A. De Bakker, The effect of high external magnetic fields on the hyperfine interactions in the Fe-Ni phases of the Santa Catharina meteorite. Hyp. Interact. 94, 2349–2353 (1992)

    Article  Google Scholar 

  286. D.G. Rancourt, R.B. Scorzelli, Low spin γ-Fe-Ni (γLS) proposed as a new mineral in Fe-Ni-bearing meteorites: epitaxial intergrowth of γLS and tetrataenite as possible equilibrium state at ~20–40 at % Ni. J. Magn. Magn. Mat. 150, 30–36 (1995)

    Article  ADS  Google Scholar 

  287. C.L. Herzenberg, D.L. Riley, Mössbauer spectrometry of lunar samples. Science 167, 683–686 (1970)

    Article  ADS  Google Scholar 

  288. P. Gay, G.M. Bancroft, M.G. Bown, Diffraction and Mössbauer studies of minerals from lunar soils and rocks. Science 167, 626–628 (1970)

    Article  ADS  Google Scholar 

  289. J. Duchesne, J. Depireux, A. Gérard, F. Grandjean, M. Read, Study with Mössbauer spectrometry on iron distribution in mineralogical fractions separated by lunar rocks reported by Apollo-12. Bull. Cl. Sci. Acad. R. Belg. 57, 1204–1211 (1971)

    ADS  Google Scholar 

  290. T.C. Gibb, R. Greatrex, N.N. Greenwood, An assessment of results obtained from Mössbauer spectra of lunar samples. Phil. Trans. R. Soc. Lond. A 285, 235–240 (1977)

    Article  ADS  Google Scholar 

  291. R.V. Morris, G. Klingelhöfer, R.L. Korotev, T.D. Shelfer, Mössbauer mineralogy on the Moon: The lunar regolith. Hyp. Interact. 117, 405–432 (1998)

    Article  ADS  Google Scholar 

  292. G. Klingelhöfer, In situ analysis of planetary surfaces by Mössbauer spectroscopy. Hyp. Interact. 113, 369–374 (1998)

    Article  ADS  Google Scholar 

  293. G. Klingelhöfer, R.V. Morris, B. Bernhardt, D. Rodionov, P.A. de Souza, S.W. Squyres, J. Foh, E. Kankeleit, R. Gellert, C. Schröder, S. Linkin, E. Evlanov, B. Zubkov, O. Prilutski, Athena MIMOS II Mössbauer spectrometer investigation. J. Geophys. Res. Planets 108, 8067 (2003)

    Article  ADS  Google Scholar 

  294. R.V. Morris, G. Klingelhöfer, B. Bernhardt, C. Schröder, D.S. Rodionov, P.A. De Souza Jr, A. Yen, R. Gellert, E.N. Evlanov, J. Foh, E. Kankeleit, P. Gütlich, D.W. Ming, F. Renz, T. Wdowiak, S.W. Squyres, R.E. Arvidson, Mineralogy at Gusev Crater from the Mössbauer spectrometer on the Spirit Rover. Science 305, 833–836 (2004)

    Article  ADS  Google Scholar 

  295. R.V. Morris, G. Klingelhöfer, C. Schröder, D.S. Rodionov, A. Yen, D.W. Ming, P.A. De Souza Jr, I. Fleischer, T. Wdowiak, R. Gellert, B. Bernhardt, E.N. Evlanov, B. Zubkov, J. Foh, E. Kankeleit, U. Bonnes, P. Gütlich, F. Renz, S.W. Squyres, R.E. Arvidson, Mössbauer mineralogy of rock, soil, and dust at Gusev Crater, Mars: Spirit’s journey through weakly altered olivine basalt on the Plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res. 111, E02S13 (2006)

    Article  ADS  Google Scholar 

  296. R.V. Morris, G. Klingelhöfer, C. Schröder, D.S. Rodionov, A. Yen, D.W. Ming, P.A. De Souza Jr, T. Wdowiak, I. Fleischer, R. Gellert, B. Bernhardt, U. Bonnes, B.A. Cohen, E.N. Evlanov, J. Foh, P. Gütlich, E. Kankeleit, T. McCoy, D.W. Mittlefehldt, F. Renz, M.E. Schmidt, B. Zubkov, S.W. Squyres, R.E. Arvidson, Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. 111, E12S15 (2006)

    Article  ADS  Google Scholar 

  297. G. Klingelhöfer, R.V. Morris, B. Bernhardt, C. Schröder, D.S. Rodionov, P.A. de Souza, A. Yen, R. Gellert, E.N. Evlanov, E. Kankeleit, P. Gütlich, D.W. Ming, F. Renz, T. Wdowiak, S.W. Squyres, R.E. Arvidson, Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306, 1740–1745 (2004)

    Article  ADS  Google Scholar 

  298. G. Klingelhöfer, E. De Grave, R.V. Morris, A. Van Alboom, V.G. de Resende, P.A. De Souza, D. Rodionov, C. Schröder, D.W. Ming, A. Yen, Mössbauer spectroscopy on Mars: goethite in the Columbia Hills at Gusev crater. Hyp. Interact. 166, 549–554 (2006)

    Article  ADS  Google Scholar 

  299. C. Van Cromphaut, V.G. de Resende, E. De Grave, A. van Alboom, R.E. Vandenberghe, G. Klingelhöfer, Characterisation of the magnetic iron phases in Clovis Class rocks in Gusev crater from the MER Spirit Mössbauer spectrometer. Geochim. Cosmochim. Acta 71, 4814–4822 (2007)

    Article  ADS  Google Scholar 

  300. C. Van Cromphaut, V.G. de Resende, E. De Grave, R.E. Vandenberghe, Temperature dependence of the hyperfine parameters of the iron bearing phases in the Mössbauer spectra collected by the Mars Exploration Rover Spirit. Hyp. Interact. 190, 143–148 (2009)

    Article  ADS  Google Scholar 

  301. D.G. Agresti, I. Fleischer, G. Klingelhöfer, R.V. Morris, On simfitting MER Mössbauer data to characterize Martian hematite. J. Phys. Conf. Ser. 217, 012063 (2010)

    Article  ADS  Google Scholar 

  302. C. Schröder, D.S. Rodionov, T.J. McCoy, B.L. Jolliff, R. Gellert, L.R. Nittler, W.H. Farrand, J.R. Johnson, S.W. Ruff, J.W. Ashley, D.W. Mittlefehldt, K.E. Herkenhoff, I. Fleischer, A.F.S. Haldemann, G. Klingelhöfer, D.W. Ming, R.V. Morris, P.A. De Souza Jr, S.W. Squyres, C. Weitz, A.S. Yen, J. Zipfel, T. Economou, Meteorites on Mars observed with the Mars Exploration Rovers. J. Geophys. Res. 113, 06 (2007)

    Google Scholar 

  303. D. Rodionov, C. Schröder, G. Klingelhöfer, R.V. Morris, T. Wdowiak, P.A. de Souza Jr, A. Yen, T. Wdowiak, S.W. Squyres, And the Athena Science Team: Mössbauer investigation of “Bounce Rock” at Meridiani Planum on Mars—Indications for the first shergottite on Mars. Meteorit. Planet. Sci. 39, A91 (2004)

    Google Scholar 

  304. C. Schröder, R. Gellert, B.L. Jolliff, G. Klingelhöfer, T.J. McCoy, R.V. Morris, D.S. Rodionov, P.A. De Souza Jr, A.S. Yen, J. Zipfel, And the Athena Science team: A stony meteorite discovered by the Mars Exploration Rover Opportunity on Meridiani Planum. Mars. Meteorit. Planet. Sci. 41, 5285 (2006)

    Google Scholar 

  305. M. Blumers, B. Bernhardt, P. Lechner, G. Klingelhöfer, C. d’Uston, H. Soltau, L. Strüder, R. Eckhardt, J. Brückner, H. Henkel, J.G. Lopez, J. Maul, The miniaturized Mössbauer spectrometer MIMOS IIA: Increased sensitivity and new capability for elemental analysis. Nucl. Instrum. Methods: Phys. Res. A 624, 277–281 (2010)

    Article  ADS  Google Scholar 

  306. D. Chambaere, Studie van de strukturele en magnetische eigenschappen van β-FeOOH en van zijn fasetransformatie naar αFe2O3. Ph.D. thesis, (Ghent University, 1983)

    Google Scholar 

  307. B.J. Evans, R.G. Johnson, F.E. Senftle, C.B. Cecil, F. Dulong, The 57Fe Mössbauer parameters of pyrite and marcasite with different provenances. Geochim. Cosmochim. Acta 46, 761–775 (1982)

    Article  ADS  Google Scholar 

  308. S.G. Eeckhout, C. Casteñeda, A.C.M. Ferreira, A. Sabioni, E. De Grave, D.C.L. Vasconcelos, Spectroscopic studies of spessartine from Brazilian pegmatites. Am. Mineral. 87, 1297–1306 (2002)

    Google Scholar 

  309. E. De Grave, S. Geets, 57 Fe Mössbauermetingen aan Belgische Glauconieten. Bull. Soc. Belge Géol. 88, 237–251 (1979)

    Google Scholar 

  310. E. De Grave, A. Van Alboom, Evaluation of ferrous and ferric Mössbauer fractions. Phys. Chem. Miner. 18, 337–342 (1991)

    Article  ADS  Google Scholar 

  311. W. Stiers, U. Schwertmann, Evidence for manganese substitution in synthetic goethite. Geochim. Cosmochim. Acta 49, 1909–1911 (1985)

    Article  ADS  Google Scholar 

  312. D.J. Vaughan, M.S. Ridout, Mössbauer study of pyrrhotite (Fe7S8). Solid State Commun. 8, 2165–2167 (1970)

    Article  ADS  Google Scholar 

  313. H.V. Varma, J. Varma, Mössbauer effect study of natural staurolite. Phys. Stat. Solidi (a) 97, 275–278 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  314. F. Seifert, A note on the Mössbauer spectrum of 57Fe in ferrocarpholite. Mineral. Mag. 43, 313–315 (1979)

    Article  Google Scholar 

  315. Y. Fuchs, M. Mellini, I. Memmi, Crystal-chemistry of magnesiocarpholite: controversial X-ray diffraction, Mössbauer, FTIR and Raman results. Eur. J. Mineral. 13, 533–543 (2001)

    Article  Google Scholar 

  316. L.G. Dainyak, V.A. Drits, Interpretation of the Mössbauer spectra of nontronite, celadonite and glauconite. Clays Clay Miner. 35, 363–372 (1987)

    Article  Google Scholar 

  317. H. Kodoma, G. Longworth, M.G. Townsend, A Mössbauer investigation of some chlorites and their oxidation products. Can. Mineral. 20, 585–590 (1982)

    Google Scholar 

  318. D.G. Agresti, M.D. Dyar, M.W. Schaefer, Velocity calibration for in situ Mössbauer data from Mars. Hyp. Interact. 167, 845–850 (2006)

    Article  ADS  Google Scholar 

  319. C. Van Cromphaut, V.G. de Resende, E. De Grave, R.E. Vandenberghe, Mössbauer study of Meridiani Planum, the first iron-nickel meteorite found on the surface of Mars by the MER Opportunity. Meteorit. Planet. Sci. 42, 2119–2123 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to Darby Dyar, Enver Murad and Jean-Marie Génin for providing precious information about some specific items. Darby Dyar, Richard Morris and Jean-Marie Génin are also acknowledged for giving the authorization of using some of their figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vandenberghe, R.E., De Grave, E. (2013). Application of Mössbauer Spectroscopy in Earth Sciences. In: Yoshida, Y., Langouche, G. (eds) Mössbauer Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32220-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32220-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32219-8

  • Online ISBN: 978-3-642-32220-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics