Application of Mössbauer Spectroscopy in Earth Sciences

  • Robert E. Vandenberghe
  • Eddy De Grave


Iron being the fourth most abundant element in the earth crust, 57Fe Mössbauer spectroscopy has become a suitable additional technique for the characterization of all kind of soil materials and minerals. However, for that purpose a good knowledge of the spectral behavior of the various minerals is indispensable. In this chapter a review of the most important soil materials and rock-forming minerals is presented. It starts with a description of the Mössbauer spectroscopic features of the iron oxides and hydroxides, which are essentially present in soils and sediments. Further, the Mössbauer spectra from sulfides, sulfates and carbonates are briefly considered. Finally, the Mössbauer features of the typical and most common silicate and phosphate minerals are reported. The chapter ends with some typical examples, illustrating the use and power of Mössbauer spectroscopy in the characterization of minerals.


Isomer Shift Quadrupole Splitting Hyperfine Field Magnetic Hyperfine Field Hyperfine Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Darby Dyar, Enver Murad and Jean-Marie Génin for providing precious information about some specific items. Darby Dyar, Richard Morris and Jean-Marie Génin are also acknowledged for giving the authorization of using some of their figures.


  1. 1.
    G.J. Long, T.E. Cranshaw, G. Longworth, The ideal Mössbauer effect absorber thicknesses. Mössbauer Eff. Ref. Data J. 6, 42–49 (1983)Google Scholar
  2. 2.
    D.G. Rancourt, A.M. McDonald, A.E. Lalonde, J.Y. Ping, Mössbauer absorber thicknesses for accurate site populations in Fe-bearing minerals. Am. Mineral. 78, 1–7 (1993)Google Scholar
  3. 3.
    G.M. Bancroft, Mössbauer Spectroscopy. An Introduction for Inorganic Chemists and Geochemists (McGraw-Hill, Maidenhead, 1973)Google Scholar
  4. 4.
    G. Lang, Interpretation of experimental Mössbauer spectrum areas. Nucl. Instrum. Meth. 24, 425–428 (1963)ADSCrossRefGoogle Scholar
  5. 5.
    D.G. Rancourt, Accurate site populations from Mössbauer spectroscopy. Nucl. Instr. Meth. Phys. Res. B 44, 199–210 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    E. Murad, The characterization of goethite by Mössbauer spectroscopy. Am. Mineral. 67, 1007–1011 (1982)Google Scholar
  7. 7.
    D.D. Amasiriwardena, E. De Grave, L.H. Bowen, S.B. Weed, Quantitative determination of aluminium-substituted goethite-hematite mixtures by Mössbauer spectroscopy. Clays Clay Miner. 34, 250–256 (1986)CrossRefGoogle Scholar
  8. 8.
    R.E. Vandenberghe, E. De Grave, G. De Geyter, C. Landuydt, Characterization of goethite and hematite in a Tunisian soil profile by Mössbauer spectroscopy. Clays Clay Miner. 34, 275–280 (1986)CrossRefGoogle Scholar
  9. 9.
    J. Hesse, A. Rübartsch, Model independent evaluation of overlapped Mössbauer spectra. J. Phys. E. Sci. Instrum. 7, 526–532 (1974)ADSCrossRefGoogle Scholar
  10. 10.
    G. Le Caer, J.M. Dubois, Evaluation of hyperfine distributions from overlapped Mössbauer spectra of amorphous alloys. J. Phys. E. Sci. Instrum. 12, 1083–1090 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    C.O. Wivel, S. Morup, Improved compotutional procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra. J. Phys. E. Sci. Instrum. 14, 605–610 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    R.E. Vandenberghe, E. De Grave, P.M.A. de Bakker, On the methodology of the analysis of Mössbauer spectra. Hyp. Interact. 83, 29–49 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    L.H. Bowen, S.B. Weed, Mössbauer spectroscopy of soils and sediments, in Chemical Mössbauer Spectroscopy, ed. by R.H. Herber (Plenum, New York, 1984), pp. 217–242CrossRefGoogle Scholar
  14. 14.
    E. Murad, J.H. Johnston, Iron oxides and oxyhydroxides, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 2, ed. by G.J. Long (Plenum, New York, 1987), pp. 507–582Google Scholar
  15. 15.
    R.L. Parfitt, C.W. Childs, Estimation of forms of Fe and Al—A review and analysis of contrasting soils by dissolution and Mössbauer methods. Aust. J. Soil Res. 26, 121–144 (1988)CrossRefGoogle Scholar
  16. 16.
    E. Murad, Application of 57Fe Mössbauer spectroscopy to problems in clay mineralogy and Soil Science: possibilities and limitations, in Advances in Soil Science, vol. 12, ed. by B.A. Stewart (Springer, New York, 1990), pp. 125–157Google Scholar
  17. 17.
    R.E. Vandenberghe, E. De Grave, L.H. Bowen, C. Landuydt, Some aspects concerning the characterization of iron oxides and hydroxides in soils and clays. Hyp. Interact. 53, 175–196 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    L.H. Bowen, E. De Grave, R.E. Vandenberghe, Mössbauer effect studies of magnetic soils and sediments, in Mössbauer Spectroscopy Applied to Magnetism and Material Science, vol. 1, ed. by G.J. Long, F. Grandjean (Plenum, New York, 1993), pp. 115–159Google Scholar
  19. 19.
    E. Murad, Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Miner. 45, 413–430 (2010)CrossRefGoogle Scholar
  20. 20.
    J.B. Forsyth, I.G. Hedley, C.E. Johnson, The magnetic structure and hyperfine field of goethite (α-FeOOH). J. Phys. Chem. C 1, 179–188 (1968)ADSGoogle Scholar
  21. 21.
    E. De Grave, R.E. Vandenberghe, 57Fe Mössbauer effect study of well crystallized goethite (α-FeOOH). Hyp. Interact. 28, 643 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    D.C. Golden, L.H. Bowen, S.B. Weed, J.M. Bigham, Mössbauer studies of synthetic and soil-occuring aluminium-substituted goethites. Soil Sci. Soc. Am. J. 43, 802–808 (1979)CrossRefGoogle Scholar
  23. 23.
    B.A. Goodman, D.G. Lewis, Mössbauer spectra of aluminous goethites (α—FeOOH). J. Soil Sci. 32, 351–364 (1981)CrossRefGoogle Scholar
  24. 24.
    S.A. Fysh, P.E. Clark, Aluminium goethite: A Mössbauer study. Phys. Chem. Miner. 8, 180–187 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    E. Murad, U. Schwertmann, The influence of aluminum substitution and crystallinity on the Mössbauer spectra of goethite. Clay Miner. 18, 301–312 (1983)CrossRefGoogle Scholar
  26. 26.
    J. Fleisch, R. Grimm, J. Grübler, P. Gütlich, Determination of the aluminum content in natural and synthetic alumo-goethites using Mössbauer spectroscopy. J. Phys. Colloq. C1(41), 169–170 (1980)Google Scholar
  27. 27.
    T. Ericsson, A. Krishnamurthy, B. Srivastava, Morin-transition in Ti-substituted hematite: A Mössbauer study. Phys. Scr. 33, 88–90 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    J.H. Johnston, K. Norrish, 57Fe Mössbauer spectroscopic study of a selection of Australian and other goethites. Aust. J. Soil Res. 19, 231–237 (1981)CrossRefGoogle Scholar
  29. 29.
    J. Friedl, U. Schwertmann, Aluminium influence on iron oxides: XVIII. The effect of Al substitution and crystal size on magnetic hyperfine fields of natural goethites. Clay Miner. 31, 455–464 (1996)CrossRefGoogle Scholar
  30. 30.
    D.G. Schulze, U. Schwertmann, The influence of aluminum on iron oxides. X. Properties of Al substituted goethites. Clay Miner. 19, 521–539 (1984)CrossRefGoogle Scholar
  31. 31.
    E. Wolska, U. Schwertmann, The mechanism of solid solution formation between goethite and diaspore. N Jb. Miner. Mh. 5, 213–223 (1993)Google Scholar
  32. 32.
    C.A. Barrero, R.E. Vandenberghe, E. De Grave, G.M. Da Costa, A qualitative analysis of the Mössbauer spectra of aluminous goethites based on existing models, in ed. by I. Ortali. Conference Proceedings, vol 50 “ICAME 95″ (Editrice Compositoir, Bologna, 1996)Google Scholar
  33. 33.
    C.A. Barrero, R.E. Vandenberghe, E. De Grave, The electrical hyperfine parameters in synthetic aluminogoethites. Czech J. Phys. 47, 533–536 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    C.A. Barrero, R.E. Vandenberghe, E. De Grave, A.L. Morales, The influence of the sample properties on the electrical hyperfine parameters in synthetic aluminogoethites. Hyp. Interact. C2, 209–212 (1997)Google Scholar
  35. 35.
    R.E. Vandenberghe, C.A. Barrero, G.M. Da Costa, E. Van San, E. De Grave, Mössbauer characterization of iron oxides and (oxy) hydroxides: The present state of the art. Hyp. Interact. 126, 247–259 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    C.A. Barrero, R.E. Vandenberghe, E. De Grave, A.L. Morales, H. Perez, The experimental nuclear quadrupole interaction in synthetic Al-goethites of various crystallinity. Hyp. Interact. 148/149, 337–344 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    J.A.M. Gómez, V.G. de Resende, J. Antonissen, E. De Grave, Influence of Mn-for-Fe substitution on structural properties of synthetic goethite. Hyp. Interact. 189, 143–149 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    R.E. Vandenberghe, A.E. Verbeeck, E. De Grave, W. Stiers, 57Fe Mössbauer effect Study of Mn-substituted goethite and hematite. Hyperfine Interact. 29, 1157–1160 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    R.M. Cornell, R. Giovanoli, P.W. Schindler, Clays Clay Miner. 35, 21–28 (1987)CrossRefGoogle Scholar
  40. 40.
    T.G. Quin, G.J. Long, C.G. Benson, S. Mann, R.J. Williams, Influence of silicon and phosphorus on structural and magnetic properties of synthetic goethite and related oxides. Clays Clay Miner. 36, 165–175 (1988)CrossRefGoogle Scholar
  41. 41.
    S.K. Kwon, K. Kimijima, K. Kanie, S. Suzuki, A. Muramatsu, M. Saito, K. Shinoda, Y. Waseda, Influence of silicate ions on the formation of goethite from green rust in aqueous solution. Corros. Sci. 49, 2946–2961 (2007)CrossRefGoogle Scholar
  42. 42.
    D. Chambaere, E. De Grave, On the Néel temperature of β-FeOOH: structural dependence and its implications. J. Magn. Magn. Mater. 42, 263–268 (1984)ADSCrossRefGoogle Scholar
  43. 43.
    C.W. Childs, B.A. Goodman, E. Paterson, F.W.D. Woodhams, Nature of iron in akaganeite (ϑ-FeOOH). Aust. J. Chem. 33, 15–26 (1980)CrossRefGoogle Scholar
  44. 44.
    D. Chambaere, E. De Grave, R.L. Vanleerberghe, R.E. Vandenberghe, The electric field gradient at the iron sites in β-FeOOH. Hyp. Interact. 20, 249–262 (1984)ADSCrossRefGoogle Scholar
  45. 45.
    D. Chambaere, E. De Grave, On the influence of the double iron co-ordination on the hyperfine field in β-FeOOH. J. Magn. Magn. Mater. 44, 349–352 (1984)ADSCrossRefGoogle Scholar
  46. 46.
    C.E. Johnson, Antiferromagnetism of γ-FeOOH: A Mössbauer effect study. J. Phys. C: Solid State Phys. 2, 1996–2002 (1969)ADSCrossRefGoogle Scholar
  47. 47.
    E. Murad, U. Schwertmann, The influence of crystallinity on the Mössbauer spectrum of lepidocrocite. Mineral. Mag. 48, 507–511 (1984)CrossRefGoogle Scholar
  48. 48.
    E. De Grave, R.M. Persoons, D.G. Chambaere, R.E. Vandenberghe, L.H. Bowen, An 57Fe Mössbauer effect study of poorly crystalline γ-FeOOH. Phys. Chem. Miner. 13, 61–67 (1986)ADSCrossRefGoogle Scholar
  49. 49.
    U. Schwertmann, E. Wolska, The influence of aluminum on iron oxides. XV. Al-for-Fe substitution in synthetic lepidocrocite. Clays Clay Miner. 38, 209–212 (1990)CrossRefGoogle Scholar
  50. 50.
    E. De Grave, G.M. da Costa, L.H. Bowen, U. Schwertmann, R.E. Vandenberghe, 57Fe Mössbauer-effect study of Al-substituted lepidocrocites. Clays Clays Miner. 44, 214–219 (1996)CrossRefGoogle Scholar
  51. 51.
    F.V. Chukhrov, B.B. Zvyagin, A.I. Gorshkov, L.P. Ermilova, V.V. Korovushkin, E.S. Rudnitskaya, N. Yu Yakubovskaya, Ferroxyhyte, a new modification of FeOOH. Izvest. Akad. Nauk. SSSR. Ser. Geol. 5, 5–24 (1976)Google Scholar
  52. 52.
    Y.N. Vodyanitskii, A.V. Sivtsov, Formation of ferrihydrite, ferroxyhyte, and vernadite in soil. Eurasian Soil Sci. 37, 863–875 (2004)Google Scholar
  53. 53.
    L. Carlson, U. Schwertmann, Natural occurrence of feroxyhite (δ’-FeOOH). Clays Clay Miner. 28, 272–280 (1980)CrossRefGoogle Scholar
  54. 54.
    M.B. Madsen, S. Mørup, C. Bender Koch, A study of microcrystals of synthetic feroxyhite (Ω’-FeOOH). Surf. Sci. 156, 328–334 (1985)CrossRefGoogle Scholar
  55. 55.
    K.M. Towe, W.F. Bradley, Mineralogical constitution of colloidal ‘hydrous ferric oxides’. J. Colloid Interface Sci. 24, 384–392 (1967)CrossRefGoogle Scholar
  56. 56.
    R.A. Eggleton, R.W. Fitzpatrick, New data and a revised structural model for ferrihydrite. Clays Clay Miner. 36, 111–124 (1988)CrossRefGoogle Scholar
  57. 57.
    C.W. Childs, Ferrihydrite: A review of structure, properties and occurrence in relation to soils. Z. Pflanzenernähr. Bodenk. 155, 441–448 (1992)CrossRefGoogle Scholar
  58. 58.
    R.L. Parfitt, C.W. Childs, A structural model for natural siliceous ferrihydrite. Clays Clay Miner. 40, 675–681 (1992)CrossRefGoogle Scholar
  59. 59.
    V.A. Drits, B.A. Sakhorov, A.L. Salyn, A. Manceau, Structural model for ferrihydrite. Clay Miner. 28, 185–207 (1993)CrossRefGoogle Scholar
  60. 60.
    E. Jansen, A. Kyek, W. Schäfer, U. Schwertmann, The structure of six-line ferrihydrite. Appl. Phys. A 74, 04–06 (2002)CrossRefGoogle Scholar
  61. 61.
    F.M. Michel, L. Ehm, S.M. Antao, P.L. Lee, P.J. Chupas, L. Gang, D.R. Strongin, M.A.A. Schoonen, B.L. Phillips, J.B. Parise, The structure of ferrihydrite, a nanocrystalline material. Science 316, 1726–1729 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    R. Harrington, M. Michel, J. Parise, D. Hausner, D. Strongin, Powder neutron diffraction studies of ferrihydrite, a nanocrystalline material. Geochim. Cosmochim. Acta 74(Suppl 1), A383–A383 (2010)Google Scholar
  63. 63.
    E. Murad, L.H. Bowen, G.J. Long, G.J. Quin, The influence of crystallinity on magnetic ordering in natural ferrihidrites. Clay Miner. 23, 161–173 (1988)CrossRefGoogle Scholar
  64. 64.
    C. Gilles, P. Bonville, K.K.W. Wong, S. Mann, Non-Langevin behaviour of the uncompensated magnetization in nanoparticles of artificial ferritin. Eur. Phys. J. B 17, 417–427 (2000)ADSCrossRefGoogle Scholar
  65. 65.
    Y. Guyodo, S.K. Banerjee, R.L. Penn, D. Burleson, T.S. Berquó, T. Seda, P. Solheid, Magnetic properties of synthetic six-line ferrihydrite nanoparticles. Phys. Earth Plant. Int. 157, 222–233 (2006)ADSCrossRefGoogle Scholar
  66. 66.
    G. De Geyter, R.E. Vandenberghe, L. Verdonck, G. Stoops, Mineralogy of Holocene bog iron ore in northern Belgium. Neues Jahrb. Miner. Abh. 153, 1–17 (1985)Google Scholar
  67. 67.
    U. Schwertmann, J. Friedl, A. Kyek, Formation and properties of a crystallinity series of synthetic ferrihydrites (2- to 6-line) and their relation to FeOOH forms. Clays Clay Miner. 52, 221–226 (2004)CrossRefGoogle Scholar
  68. 68.
    E. Murad, The Mössbauer spectrum of “well”-crystallized ferrihydrite. J. Magn. Magn. Mater. 74, 153–157 (1988)ADSCrossRefGoogle Scholar
  69. 69.
    J. Chadwick, D.H. Jones, M.F. Thomas, G.J. Tatlock, R.W. Devenish, A Mössbauer study of ferrihydrite and aluminium substituted ferrihydrites. J. Magn. Magn. Mater. 61, 88–100 (1986)ADSCrossRefGoogle Scholar
  70. 70.
    L. Carlson, U. Schwertmann, Natural ferrihydrites in surface deposits from Finland and their association with silica: Geochim. Cosmochim. Acta 45, 421–429 (1981)ADSCrossRefGoogle Scholar
  71. 71.
    A.S. Campbell, U. Schwertmann, H. Stanjek, J. Friedl, A. Kyek, P.A. Campbell, Si incorporation into hematite by heating Si-ferrihydrite. Langmuir 18, 7804–7809 (2002)CrossRefGoogle Scholar
  72. 72.
    T.S. Berquó, S.K. Banerjee, R.G. Ford, R.L. Pichler, T. Penn, High crystallinity Si-ferrihydrite: An insight into its Néel temperature and size dependence of magnetic properties. J. Geophys. Res. 112, B02102 (2007). doi: 10.1029/2006JB004583 ADSCrossRefGoogle Scholar
  73. 73.
    U. Schwertmann, F. Wagner, H. Knicker, Ferrihydrite–humic associations: magnetic hyperfine interactions. Soil Sci. Soc. Am. J. 69, 1009–1015 (2005)CrossRefGoogle Scholar
  74. 74.
    U. Schwertmann, Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Z. Pflanzenernähr. Düng. Bodenk. 195, 194–202 (1964)CrossRefGoogle Scholar
  75. 75.
    U. Schwertmann, D.G. Schulze, E. Murad, Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray-diffraction, and Mössbauer-spectroscopy. Soil Sci. Am. J. 46, 869–875 (1982)CrossRefGoogle Scholar
  76. 76.
    J.A. McKeague, J.H. Day, Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46, 13–22 (1966)CrossRefGoogle Scholar
  77. 77.
    U. Schwertmann, Use of oxalate for Fe extraction from soils. Can. J. Soil Sci. 53, 244–246 (1973)CrossRefGoogle Scholar
  78. 78.
    A.L. Walker, The effects of magnetite on oxalate-and dithionite-extractable iron. Soil Sci. Soc. Am. J. 47, 1022–1026 (1983)CrossRefGoogle Scholar
  79. 79.
    A.S. Campbell, U. Schwertmann, Evaluation of selective dissolution extractants in soil chemistry and mineralogy by differential X-ray diffraction. Clay Miner. 20, 515–519 (1985)CrossRefGoogle Scholar
  80. 80.
    J. Arocena, G. De Geyter, C. Landuydt, U. Schwertmann, Dissolution of soil iron oxides with ammonium oxalate: Comparison between bulk samples and thin sections. Pedologie XXXIX-3, 275–297 (1989)Google Scholar
  81. 81.
    F. van der Woude, Mössbauer Effect in α-Fe2O3. Phys. Status Solidi 17, 417–432 (1966)CrossRefGoogle Scholar
  82. 82.
    W. Kündig, H. Bömmel, G. Constabaris, R.H. Linquist, Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect. Phys. Rev. 142, 327–333 (1966)ADSCrossRefGoogle Scholar
  83. 83.
    A.M. van der Kraan, Mössbauer effect studies of surface ions of ultrafine α-Fe2O3 particles. Phys. Status Solidi (a) 18, 215–226 (1973)ADSCrossRefGoogle Scholar
  84. 84.
    T. Shinjo, M. Kiyama, N. Sugita, K. Watanabe, K. Takada, Surface magnetism of α- Fe2O3 by the Mössbauer spectroscopy. J. Magn. Magn. Mater. 35, 133–135 (1983)ADSCrossRefGoogle Scholar
  85. 85.
    T. Yang, A. Krishnan, N. Benczer-Koller, G. Bayreuther, Surface magnetic hyperfine interactions in Fe2O3 determined by energy-resolved conversion-electron. Phys. Rev. Lett. 48, 1292–1295 (1982)ADSCrossRefGoogle Scholar
  86. 86.
    C. Van Cromphaut, V.G. de Resende, E. De Grave, R.E. Vandenberghe, Surface effects in α-Fe2O3 nanoparticles studied by ILEEMS and TMS. Hyp. Interact. 191, 167–171 (2009)ADSCrossRefGoogle Scholar
  87. 87.
    D.G. Rancourt, S.R. Julian, J.M. Daniels, Mössbauer characterization of very small superparamagnetic particles: Application to intra-zeolitic Fe2O3. J. Magn. Magn. 49, 305–316 (1985)ADSGoogle Scholar
  88. 88.
    R.C. Nininger Jr, D. Schroeer, Mössbauer studies of the Morin transition in bulk and microcrystalline α-Fe2O3. J. Phys. Chem. Solids 39, 137–144 (1978)ADSCrossRefGoogle Scholar
  89. 89.
    A.E. Verbeeck, E. De Grave, R.E. Vandenberghe, Effect of the particle morphology on the Mössbauer effect in α-Fe2O3. Hyp. Interact. 28, 639–642 (1986)ADSCrossRefGoogle Scholar
  90. 90.
    E. De Grave, R.E. Vandenberghe, Mössbauer effect study of the spin structure in natural hematites. Phys. Chem. Miner. 17, 344–352 (1990)ADSCrossRefGoogle Scholar
  91. 91.
    N. Amin, S. Arajs, Morin temperature of annealed submicronic α-F2O3 particles. Phys. Rev. B 35, 4810–4811 (1987)ADSCrossRefGoogle Scholar
  92. 92.
    E. De Grave, L.H. Bowen, D.D. Amarasiriwardena, R.E. Vandenberghe, 57Fe Mössbauer effect study of highly substituted aluminum hematites: determination of the magnetic hyperfine field distributions. J. Magn. Magn. Mater. 72, 129–140 (1988)ADSCrossRefGoogle Scholar
  93. 93.
    M.-Z. Dang, D.G. Rancourt, J.E. Dutrizac, G. Lamarche, R. Provencher, Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials. Hyp. Interact. 117, 271–319 (1998)ADSCrossRefGoogle Scholar
  94. 94.
    J.F. Bengoa, M.S. Moreno, S.G. Marchetti, R.E. Vandenberghe, R.C. Mercader, Study of the Morin transition in pseudocubic α-Fe2O3 particles. Hyp. Interact. 161, 177–183 (2005)ADSCrossRefGoogle Scholar
  95. 95.
    P.M.A. de Bakker, E. Grave, R.E. Vandenberghe, L.H. Bowen, R.J. Pollard, R.M. Persoons, Mössbauer study of the thermal decomposition of lepidocrocite and characterization of the decomposition products. Phys. Chem. Miner. 18, 131–143 (1991)ADSCrossRefGoogle Scholar
  96. 96.
    E. Van San, E. De Grave, R.E. Vandenberghe, H.O. Desseyn, L. Datas, V. Barrón, A. Rousset, Study of Al-substituted hematites, prepared from thermal treatment of lepidocrocite. Phys. Chem. Miner. 28, 488–497 (2001)ADSCrossRefGoogle Scholar
  97. 97.
    R.E. Vandenberghe, E. Van San, E. De Grave, G.M. Da Costa, About the Morin transition in hematite in relation with particle size and aluminium substitution. Czech J. Phys. 51, 663–675 (2001)ADSCrossRefGoogle Scholar
  98. 98.
    U. Schwertmann, R.W. Fitzpatrick, R.M. Taylor, D.G. Lewis, The influence of aluminum on iron oxides: II. Preparation and properties of aluminum-substituted hematites. Clays Clay Miner. 27, 105–112 (1979)CrossRefGoogle Scholar
  99. 99.
    S.A. Fysh, P.E. Clark, Aluminium hematite: a Mössbauer study. Phys. Chem. Miner. 8, 257–267 (1982)ADSCrossRefGoogle Scholar
  100. 100.
    E. De Grave, L.H. Bowen, S.B. Weed, Mössbauer study of aluminum-substituted hematites. J. Magn. Magn. Mater. 27, 98–108 (1982)ADSCrossRefGoogle Scholar
  101. 101.
    E. De Grave, D. Chambaere, L.H. Bowen, Nature of the Morin transition in Al-substituted hematite. J. Magn. Magn. Mater. 30, 349–354 (1983)ADSCrossRefGoogle Scholar
  102. 102.
    E. Murad, U. Schwertmann, Influence of Al substitution and crystal size on the room-temperature Mössbauer spectra of hematite. Clays Clay Miner. 34, 1–6 (1986)CrossRefGoogle Scholar
  103. 103.
    G.M. da Costa, E. Van San, E. De Grave, R.E. Vandenberghe, V. Barrón, L. Datas, Al hematites prepared by homogeneous precipitation of oxinates: material characterization and determination of the Morin transition. Phys. Chem. Miner. 29, 122–131 (2002)ADSCrossRefGoogle Scholar
  104. 104.
    V. Baron, J. Gutzmer, H. Rundlof, R. Tellgren, Neutron powder diffraction study of Mn-bearing hematite, α-Fe2 − xMnxO3, in the range 0 ≤ x≤0.176. Solid State Sci. 7, 753–759 (2005)ADSCrossRefGoogle Scholar
  105. 105.
    R.M. Cornell, R. Giovanoli, Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media. Clays Clay Miner. 35, 11–20 (1987)CrossRefGoogle Scholar
  106. 106.
    R.E. Vandenberghe, A.E. Verbeeck, E. De Grave, On the Morin transition in Mn-substituted hematite. J. Magn. Magn. Mater. 54–57, 898–900 (1986)CrossRefGoogle Scholar
  107. 107.
    G. Shirane, D.E. Cox, W.J. Takei, S.L. Ruby, A study of the magnetic properties of the FeTiO3-αFe2O3 system by neutron diffraction and the Mössbauer effect. J. Phys. Soc. Jpn. 17, 1598–1611 (1962)ADSCrossRefGoogle Scholar
  108. 108.
    A.H. Muir Jr, R.M. Housley, R.W. Grant, M. Abdel-Gawad, M. Blander, Mössbauer spectroscopy of Moon samples. Science 167, 688–690 (1970)ADSCrossRefGoogle Scholar
  109. 109.
    R.W. Grant, R.M. Housley, S. Geller, Hyperfine interactions of Fe2+ in ilmenite. Phys. Rev. B 5, 1700–1703 (1972)ADSCrossRefGoogle Scholar
  110. 110.
    W. Kim, I.I.J. Park, C.S. Kim, Mössbauer study of magnetic structure of cation-deficient iron sulfide Fe0.92S. J. Appl. Phys. 105, 07D535–07D535-3 (2009)CrossRefGoogle Scholar
  111. 111.
    W.Q. Guo, S. Malus, D.H. Ryan, Z. Altounian, Crystal structure and cation distributions in the FeTi2O5–Fe2TiO5 solid solution series. J. Phys. Condens. Matter. 11, 6337–6346 (1999)ADSCrossRefGoogle Scholar
  112. 112.
    L. Häggström, H. Annersten, T. Ericsson, R. Wäppling, W. Karner, S. Bjarman, Magnetic dipolar and electric quadrupolar effects on the Mössbauer spectra of magnetite above the Verwey transition. Hyp. Interact. 5, 201–214 (1978)CrossRefGoogle Scholar
  113. 113.
    H. Annersten, S.S. Hafner, Vacancy distribution in synthetic spinels of the series Fe3O4–γ-Fe2O3. Z. Kristallogr. 137, 321–340 (1973)CrossRefGoogle Scholar
  114. 114.
    A. Ramdani, J. Steinmetz, C. Gleitzer, J.M.D. Coey, J.M. Friedt, Perturbation de l’échange electronique rapide par des lacunes cationiques dans Fe3–xO4 (x ≤ 0.09). J. Phys. Chem. Solids 48, 217–228 (1987)ADSCrossRefGoogle Scholar
  115. 115.
    C.I. Pearce, C.M.B. Henderson, N.D. Teiling, R.A.D. Pattrick, D.J. Vaughan, J.M. Charnock, E. Arenholz, F. Tuna, V.S. Coker, G. van der Laan, Iron site occupancies in magnetite-ulvöspinel solid solution: a new approach using X-ray magnetic circular dichroism. Am. Mineral. 95, 425–439 (2010)CrossRefGoogle Scholar
  116. 116.
    H. Tanaka, M. Kono, Mössbauer spectra of titanomagnetite: A reappraisal. J. Geomag. Geoelectr. 39, 463–475 (1987)CrossRefGoogle Scholar
  117. 117.
    H.H. Hamdeh, K. Barghout, J.O. Ho, P.M. Shand, L.L. Miller, A Môssbauer evaluation of cation distribution in titanomagnetites. J. Magn. Magn. Mater. 191, 72–78 (1999)ADSCrossRefGoogle Scholar
  118. 118.
    R.S. Hargrove, W. Kündig, Mössbauer measurements of magnetite below the Verwey transition. Solid State Commun. 8, 303–308 (1970)ADSCrossRefGoogle Scholar
  119. 119.
    Y. Miyahara, Impurity effects on the transition temperature of magnetite. J Phys. Soc. Jpn. 32, 629–634 (1972)ADSCrossRefGoogle Scholar
  120. 120.
    V.A.M. Brabers, F. Waltz, H. Kronmuller, Impurity effects upon the Verwey transition in magnetite. Phys. Rev. B 58, 14163–14166 (1998)ADSCrossRefGoogle Scholar
  121. 121.
    M.M. Hanzlik, N. Petersen, R. Keller, E. Schmidbauer, Electron microscopy and 57Fe Mössbauer spectra of 10 nm particles, intermediate in composition between Fe3O4–γ-Fe2O3, produced by bacteria. Geophys. Res. Lett. 23, 479–482 (1996)ADSCrossRefGoogle Scholar
  122. 122.
    G.M. da Costa, E. De Grave, L.H. Bowen, P.M.A. de Bakker, R.E. Vandenberghe, The center shift in Mössbauer spectra of maghemite and aluminum maghemites. Clays Clay Miner. 42, 628–633 (1994)CrossRefGoogle Scholar
  123. 123.
    J.M.D. Coey, D. Khalafalla, Superparamagnetic γ-Fe2O3. Phys. Status Solidi (a) 11, 229–242 (1972)ADSCrossRefGoogle Scholar
  124. 124.
    U. Schwertmann, Occurrence and formation of iron in various pedenvironments, in Iron in Soils and Clay Minerals, vol. 217, NATO ASI Series, Series C: Math. and Phys. Sci., ed. by J.W. Stucki, B.A. Goodman, U. Schwertmann (D.Reidel Publication, Dordrecht, 1988), pp. 267–308CrossRefGoogle Scholar
  125. 125.
    G.M. da Costa, C.H. Laurent, E. De Grave, R.E. Vandenberghe, A comprehensive Mössbauer study of highly-substituted aluminium maghemite. eds. by M.D. Dyar, C. McCammon, M.W. Schaefer, Mineral Spectroscopy: A Tribute to Roger G. Burns, The Geochemical Society (Special Publication 5, 1996) pp. 93–104Google Scholar
  126. 126.
    G.M. da Costa, E. De Grave, R.E. Vandenberghe, Mössbauer studies of maghemites and Al-substituted maghemites. Hyp. Interact. 117, 207–243 (1998)ADSCrossRefGoogle Scholar
  127. 127.
    J.E.M. Allan, J.M.D. Coey, I.S. Sanders, U. Schwertmann, G. Friedrich, A. Wiechowski, An occurrence of a fully-oxidized natural titanomaghemite in basalt. Miner. Mag. 53, 299–304 (1989)CrossRefGoogle Scholar
  128. 128.
    W. Xu, D.R. Peacor, W.A. Dollase, R. Van Der Voo, R. Beaubouef, Transformation of titanomagnetite to titanomaghemite: A slow-step oxidation ordering process in MORB. Am. Mineral. 82, 1101–1110 (1997)Google Scholar
  129. 129.
    S. Collyer, N.W. Grimes, D.J. Vaughan, G. Longworth, Studies of the crystal structure and crystal chemistry of titanomaghemite. Am. Mineral. 73, 153–160 (1988)Google Scholar
  130. 130.
    E. Murad, R.M. Taylor, The Mössbauer spectra of hydroxycarbonate green rusts. Clay Miner. 19, 77–83 (1984)CrossRefGoogle Scholar
  131. 131.
    J.M.R. Génin, Ph Bauer, A.A. Olowe, D. Rézel, Mössbauer study of the kinetics of simulated corrosion process of iron in chlorinated aqueous solution around room temperature: the hyperfine structure of ferrous hydroxides and green rust I. Hyp. Interact. 29, 1355–1360 (1986)ADSCrossRefGoogle Scholar
  132. 132.
    A.A. Olowe, J.M.R. Génin, Ph Bauer, Hyperfine interactions and structures of ferrous hydroxide and green rust II in sulfated aqueous media. Hyp. Interact. 41, 501–504 (1988)ADSCrossRefGoogle Scholar
  133. 133.
    S.H. Drissi, Ph Refait, M. Abdelmoula, J.-M.R. Génin, Preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxycarbonate (green rust 1), Pourbaix diagram of iron in carbonate-containing aqueous media. Corros. Sci. 37, 2025–2041 (1995)CrossRefGoogle Scholar
  134. 134.
    C. Ruby, M. Abdelmoula, S. Naille, A. Renard, V. Khare, G. Ona-Nguema, G. Morin, J.M.R. Génin, Oxidation modes and thermodynamics of FeII−III oxyhydroxycarbonate green rust: dissolution-precipitation versus in situ deprotonation. Geochim. Cosmochim. Acta 74, 953–966 (2009)ADSCrossRefGoogle Scholar
  135. 135.
    F. Trolard, J.M.R. Génin, M. Abdelmoula, G. Bourrié, B. Humbert, A.J. Herbillon, Identification of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies. Geochim. Cosmochim. Acta 61, 1107 (1997)ADSCrossRefGoogle Scholar
  136. 136.
    M. Abdelmoula, F. Trolard, G. Bourrié, J.M.R. Génin, Evidence of Fe(II)-Fe(III) Green rust “Fougerite” mineral occurrence in hydromorphic soil and its transformation with depth. Hyp. Interact. 112, 235–238 (1998)ADSCrossRefGoogle Scholar
  137. 137.
    F. Féder, F. Trolard, G. Klingelhöfer, G. Bourrié, In situ Mössbauer spectroscopy evidence for green rust (fougerite) in a gleysol and its mineralogical transformations with time and depth. Geochim. Cosmochim. Acta 69, 4463–4483 (2005)ADSCrossRefGoogle Scholar
  138. 138.
    J.-M.R. Génin, O. Guérin, A.J. Herbillon, E. Kuzmann, S.J. Mills, G. Morin, G. Ona-Nguema, C. Ruby, C. Upadhyay, Redox topotactic reactions in FeII−III oxyhydroxycarbonate new minerals related to fougèrite in gleysols: “trébeurdenite and mössbauerite”. Hyp. Interact. 204(1–3), 71–81 (2012)ADSCrossRefGoogle Scholar
  139. 139.
    B. Rusch, J.M.R. Génin, C. Ruby, M. Abdelmoula, P. Bonville, Ferrimagnetic properties of Fe(II-III) (oxy)hydoxycarbonate green rust. Solid State Sci. 10, 40 (2008)ADSCrossRefGoogle Scholar
  140. 140.
    S. Hafner, M. Kalvius, The Mössbauer resonance of Fe in troilite and pyrrhotite. Z. Krist. 123, 443–458 (1966)CrossRefGoogle Scholar
  141. 141.
    L.F. Power, H.A. Fine, The iron-sulphur system. Part l. The structures and physical properties of the compounds of the low-temperature phase fields. Miner. Sci. Eng. 8, 106–128 (1976)Google Scholar
  142. 142.
    A.D. Elliot, Structure of pyrrhotite 5C (Fe9S10). Acta Cryst. B66, 271–279 (2010)Google Scholar
  143. 143.
    R. Gosselin, M.G. Townsend, R.J. Tremblay, A.H. Webster, Mössbauer effect in single-crystal Fe1−xS. J. Solid State Chem. 17, 43–48 (1976)ADSCrossRefGoogle Scholar
  144. 144.
    M.G. Townsend, A.H. Webster, J.L. Harwood, H. Roux-Buisson, Ferrimagnetic transition in Fe0.9S—Magnetic, thermodynamic and kinetic aspects. J. Phys. Chem. Solids 40, 183–189 (1979)ADSCrossRefGoogle Scholar
  145. 145.
    V.P. Gupta, A.K. Singh, K. Chandra, S.K. Jaireth, Investigations of pyrrhotites of Indian ore deposits. in ED Proceedings of the Indian Science Academy, International Conferences on the Application of the Mössbauer Effect, Jaipur 1981, (Indian Nat Science Academy, New Delhi, 1982), pp. 863–865Google Scholar
  146. 146.
    M. Saporoschenko, C.C. Hinckley, H. Twardowska, G.V. Smith, O. Zahraa, R.H. Shiley, K.L. Konopka, Mössbauer study of synthetic pyrrhotite. in ED Proceedings of the Indian Science Academy, International Conference on the Application of the Mössbauer Effect, Jaipur 1981, (Indian National Science Academy, New Delhi, 1982), pp. 869–871Google Scholar
  147. 147.
    C. Jeandey, J.L. Oddou, J.L. Mattei, G. Fillion, Mössbauer investigation of the pyrrhotite at low temperature. Solid State Commun. 78, 195–198 (1991)ADSCrossRefGoogle Scholar
  148. 148.
    R.E. Vandenberghe, E. De Grave, P.M.A. de Bakker, M. Krs, J.J. Hus, Mössbauer study of natural greigite. Hyp. Interact. 68, 319–322 (1991)ADSCrossRefGoogle Scholar
  149. 149.
    V. Hoffmann, H. Stanjek, E. Murad, Mineralogical, magnetic and Mössbauer data of smythite (Fe9S11). Studia Geophys. Geod. 37, 366–380 (1993)CrossRefGoogle Scholar
  150. 150.
    J.M.D. Coey, M.R. Spender, A.H. Morrish, Magnetic structure of spinel Fe3S4. Solid State Commun. 8, 1605–1608 (1970)ADSCrossRefGoogle Scholar
  151. 151.
    L. Chang, B.D. Rainford, J.R. Stewart, C. Ritter, A.P. Roberts, Y. Tang, Q. Chen, Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction. J. Geophys. Res. 114, B07101 (2009). doi: 10.1029/2008JB006260 ADSCrossRefGoogle Scholar
  152. 152.
    A.P. Roberts, L. Chang, C.J. Rowan, C.-S. Horng, F. Florindo, Magnetic properties of sedimentary greigite (Fe3S4): An update. Rev. Geophys. 49, RG1002 (2011). doi: 10.1029/2010RG000336 ADSCrossRefGoogle Scholar
  153. 153.
    J.A. Morice, L.V.C. Rees, D.T. Rickard, Mössbauer studies of iron sulphides. J. Inorg. Nucl. Chem. 31, 3797–3802 (1969)CrossRefGoogle Scholar
  154. 154.
    D.J. Vaughan, M.S. Ridout, Mössbauer studies of some sulphide minerals. J. Inorg. Nucl. Chem. 33, 741–746 (1971)CrossRefGoogle Scholar
  155. 155.
    O. Knop, C.-H. Huang, F.W.D. Woodhams, Chalcogenides of the transition elements. VII. A Mössbauer study of pentlandite. Am. Mineral. 55, 115–1130 (1970)Google Scholar
  156. 156.
    P.L. Wincott, D.J. Vaughan, Spectroscopic studies of sulfides. Rev. Mineral. 61, 181–229 (2006)CrossRefGoogle Scholar
  157. 157.
    F.C. Hawthorne, S.V. Krivovichev, P.C. Burns, The crystal chemistry of sulfate minerals. Rev. Mineral. Geochem. 40, 1–112 (2000)CrossRefGoogle Scholar
  158. 158.
    J.G. Stevens, A.M. Khasanov, J.W. Miller, H. Pollak, Z. Li (eds.), Mössbauer Minerals Handbook (Mössbauer Effect Data Center, Asheville, 1998)Google Scholar
  159. 159.
    V.A. O’Connor, Comparative crystal chemistry of hydrous iron sulfates from different terrestrial environments. Ph.D thesis, Mount Holyoke College, South Hadley, (2005)Google Scholar
  160. 160.
    M.D. Dyar, D.G. Agresti, M.W. Schaefer, C.A. Grant, E.C. Sklute, Mössbauer spectroscopy of earth and planetary materials. An. Rev. Earth Planetary Sci. 34, 83–125 (2006)ADSCrossRefGoogle Scholar
  161. 161.
    A. Ertl, M.D. Dyar, J.M. Hughes, F. Brandstätter, M.E.M. Gunther, R.C. Peterson, Pertlikite, a new tetragonal Mg-rich member of the voltaite group from Madeni Zakh. Iran. Can. Mineral. 46, 661–669 (2008)CrossRefGoogle Scholar
  162. 162.
    A. Van Alboom, V.G. De Resende, E. De Grave, J.A.M. Gómez, Hyperfine interactions in szomolnokite (FeSO4·H2O). J. Molec. Struct. 924–926, 448–456 (2009)CrossRefGoogle Scholar
  163. 163.
    P.P. Gil, A. Pesquera, F. Velasco, X-ray diffraction, infrared and Mössbauer studies of Fe-rich carbonates. Eur. J. Miner. 4, 521–526 (1992)Google Scholar
  164. 164.
    V.I. Goldanskii, E.F. Makarov, I.P. Suzdalev, I.A. Vinogradov, Quantitative test of the vibrational anisotropy origin of the asymmetry of quadrupole Mössbauer doublets. Phys. Rev. Lett. 20, 137–140 (1968)ADSCrossRefGoogle Scholar
  165. 165.
    T. Ericsson, R. Wäppling, Texture effects in 3/2-1/2 Mössbauer spectra. J. Phys. C6(37), 719–726 (1976)Google Scholar
  166. 166.
    K.K.P. Srivastava, A Mössbauer study of slow spin relaxation of paramagnetic Fe2+ in MgCO3. J. Phys. C. Solid State Phys. 16, 1137–1139 (1983)ADSCrossRefGoogle Scholar
  167. 167.
    E. De Grave, R. Vochten, An 57Fe mössbauer effect study of ankerite. Phys. Chem. Miner. 12, 108–113 (1985)ADSCrossRefGoogle Scholar
  168. 168.
    E. De Grave, 57Fe Mössbauer effect in ankerite: Study of the electronic relaxation. Solid State Commun. 60, 541–544 (1986)ADSCrossRefGoogle Scholar
  169. 169.
    G. Hilscher, P. Rogl, J. Zemann, T. Ntaflos, Low-temperature magnetic investigation of ankerite. Eur. J. Miner. 17, 103–105 (2005)CrossRefGoogle Scholar
  170. 170.
    R.J. Reeder, W.A. Dollase, Structural variation in the dolomite-ankerite solid-solution series: An X-ray, Mössbauer, and TEM study. Am Miner. 74, 1159–1167 (1989)Google Scholar
  171. 171.
    M.W. Schaefer, Measurements of iron(Ill)-rich fayalites. Nature 303, 325–327 (1983)ADSCrossRefGoogle Scholar
  172. 172.
    J.F. Duncan, J.H. Johnston, The determination of the cation distribution in olivine from single crystal Mössbauer studies. Aust. J. Chem. 26, 231–239 (1973)CrossRefGoogle Scholar
  173. 173.
    R. Santoro, R. Newnham, S. Nomura, Magnetic properties of Mn2SiO4 and Fe2SiO4. J. Phys. Chem. Solids 27, 655–666 (1966)ADSCrossRefGoogle Scholar
  174. 174.
    W. Lottermoser, K. Forcher, G. Amthauer, H. Fuess, Powder- and single crystal Mössbauer spectroscopy on synthetic fayalite. J. Phys. Chem. Miner. 22, 259–267 (1995)ADSGoogle Scholar
  175. 175.
    F. Belley, E.C. Ferré, F. Martín-Hernández, M.J. Jackson, M.D. Dyar, E.J. Catlos, The magnetic properties of natural and synthetic (Fex, Mg1 − x)2SiO4 olivines. Earth and Planet. Sci. Lett. 284, 516–526 (2009)Google Scholar
  176. 176.
    W. Kündig, J.A. Cape, R.H. Lindquist, G. Constabaris, Some magnetic properties of Fe2SiO4 from 4 K to 300 K. J. Appl. Phys. 38, 947–948 (1967)ADSCrossRefGoogle Scholar
  177. 177.
    S.S. Hafner, J. Stanek, M. Stanek, 57Fe hyperfine interactions in the magnetic phase of fayalite, Fe2SiO4. J. Phys. Chem. Solids 51, 203–208 (1990)ADSCrossRefGoogle Scholar
  178. 178.
    X. Kan, J.M.D. Coey, Mössbauer spectra, magnetic and electrical properties of laihunite, a mixed-valence iron olivine mineral. Am. Mineral. 70, 567–580 (1985)Google Scholar
  179. 179.
    M.W. Schaefer, Site occupancy and two-phase character of “ferrifayalite”. Am. Mineral. 70, 729–736 (1985)Google Scholar
  180. 180.
    G. Amthauer, H. Annersten, S.S. Hafner, The Mössbauer spectrum of 57Fe in silicate garnets. Zeit. Kristallogr. 143, 14–55 (1976)Google Scholar
  181. 181.
    E. Murad, F.E. Wagner, The Mössbauer spectrum of almandine. Phys. Chem. Miner. 14, 264–269 (1987)ADSCrossRefGoogle Scholar
  182. 182.
    E. Murad, Magnetic ordering in andradite. Am. Mineral. 69, 722–724 (1984)Google Scholar
  183. 183.
    K.B. Schwartz, D.A. Nolet, R.G. Burns, Mössbauer spectroscopy and crystal chemistry of natural Fe-Ti garnets. Am. Mineral. 65, 142–153 (1980)Google Scholar
  184. 184.
    G.M. Bancroft, A.G. Maddock, R.G. Burns, Application of the Mössbauer effect of silicate mineralogy: I. Iron silicates of known crystal structure. Geochim. Cosmochim. Acta 31, 831–834 (1967)CrossRefGoogle Scholar
  185. 185.
    W.A. Dollase, Mössbauer spectra and iron distribution in the epidote-group minerals. Z. Krist. 138, 41–63 (1973)CrossRefGoogle Scholar
  186. 186.
    K.T. Fehr, S. Heuss-Assbichler, Intracrystalline equilibria and immiscibility along the join clinozoisite-epidote. An experimental and 57Fe Mössbauer study. N. Jb. Min. Abh. 172, 43–67 (1997)Google Scholar
  187. 187.
    M. Grodzicki, S. Heuss-Assbichler, G. Amthauer, Mössbauer investigations and molecular orbital calculations. Phys. Chem. Miner. 28, 675–681 (2001)ADSCrossRefGoogle Scholar
  188. 188.
    A.K. Dzhemai, Distribution of cations in structures of iron magnesia silicates. Staurolites. V.A. Glebovitskii, ed. by in Raspred Kationov Termodin Zhelezo-Magrez Tverd Rastvorov Silik. (Izv. Nauka, Leningrad Old, Leningrad 1978), pp. 136–152Google Scholar
  189. 189.
    M.D. Dyar, C.L. Perry, C.R. Rebbert, B.L. Dutrow, M.J. Holdway, H.M. Lang, Mössbauer spectroscopy of synthetic and naturally occurring staurolite. Am. Mineral. 76, 27–41 (1991)Google Scholar
  190. 190.
    M. Akasaka, M. Nagashima, K. Makino, H. Ohashi, Distribution of Fe3 + in a synthetic (Ca, Na)2(Mg, Fe3+)Si2O7–melilite: 57Fe Mössbauer and X-ray Rietveld studies. J. Mineral. Petrol. Sci. 100, 229–236 (2005)CrossRefGoogle Scholar
  191. 191.
    B. Ghazi-Bayat, M. Behruzi, F.J. Litterst, W. Lottermoser, G. Amthauer, Crystallographic phase transition and valence fluctuation in synthetic Mn-bearing ilvaite CaFe2+2–xMnxFe3+[Si2O7/O/(OH)]. Phys. Chem. Miner. 18 491–496 (1992)Google Scholar
  192. 192.
    F.J. Litterst, G. Amthauer, Electron delocalization in ilvaite, a reinterpretation of its 57Fe Mössbauer spectrum. Phys. Chem. Miner. 10, 250–255 (1984)ADSCrossRefGoogle Scholar
  193. 193.
    C.R. Dotson, B.J. Evans, The effects of chemical composition on electron delocalization and magnetic ordering in ilvaite, Ca[Fe2+,Fe3+][Fe2+]Si2O7O(OH). J. Appl. Phys. 85, 5235–5236 (1999)Google Scholar
  194. 194.
    D.A. Nolet, Electron delocalization observed in the Mössbauer spectrum of ilvaite. Solid State Commun. 28, 719–722 (1978)ADSCrossRefGoogle Scholar
  195. 195.
    D.A. Nolet, R.G. Burns, Ilvaite: A study of temperature dependent electron delocalization by the Mössbauer effect. Phys. Chem. Miner. 4, 221–234 (1979)ADSCrossRefGoogle Scholar
  196. 196.
    N. Zotov, W. Kockelman, S.D. Jacobsen, I. Mitov, D. Paneva, R.D. Vassileva, I.K. Bonev, Structure and cation ordering in manganilvaite: a combined X-ray diffraction, neutron diffraction, and Mössbauer study. Can. Mineral. 43, 1043–1053 (2005)CrossRefGoogle Scholar
  197. 197.
    G. Amthauer, W. Lottermoser, G. Redhammer, G. Tippelt, Mössbauer studies of selected synthetic silicates. Hyp. Interact. 113, 219–248 (1998)ADSCrossRefGoogle Scholar
  198. 198.
    D.C. Price, E.R. Vance, G. Smith, A. Edgar, B.L. Dickson, Mössbauer effect studies on beryl. J. Phys. C6(37), 811–816 (1976)Google Scholar
  199. 199.
    R.R. Viana, G.M. da Costa, E. De Grave, H. Jordt-Evangelista, W.B. Stern, Characterization of beryl (aquamarine variety) by Mössbauer spectroscopy. Phys. Chem. Miner. 29, 78–86 (2002)ADSCrossRefGoogle Scholar
  200. 200.
    J.F. Duncan, J.H. Johnston, Single crystal 57Fe Mössbauer studies of the site positions in cordierite. Aust. J. Chem. 27, 249–258 (1974)CrossRefGoogle Scholar
  201. 201.
    C.A. Geiger, T. Armbruster, V. Khomenko, S. Quartieri, Cordierite I: The coordination of Fe2+. Am. Mineral. 85, 1255–1264 (2000)Google Scholar
  202. 202.
    R.G. Burns, Mixed valencies and site occupancies of iron in silicate minerals from Mössbauer spectroscopy. Can. J. Spectr. 17, 51–59 (1972)ADSGoogle Scholar
  203. 203.
    Y. Fuchs, M. Lagache, J. Linares, R. Maury, F. Varret, Mössbauer and optical spectrometry of selected schorl-dravite tourmalines. Hyperfine Interact. 96, 245–258 (1995)ADSCrossRefGoogle Scholar
  204. 204.
    A. Pieczka, J. Kraczka, W. Zabinski, Mössbauer spectra of Fe3+-poor schorls: reinterpretation on the basis of the ordered structure model. J. Czech Geol. Soc. 43, 69–74 (1998)Google Scholar
  205. 205.
    G.M. da Costa, C. Casteneda, N.S. Gomes, N.S. Pedrosa-Soares, C.M. Santana, On the analysis of the Mössbauer spectra of tourmalines. Hyp. Interact. 2, 29–34 (1997)Google Scholar
  206. 206.
    M.D. Dyar, M.E. Taylor, T.M. Lutz, C.A. Francis, C.V. Guidotti, M. Wise, Inclusive chemical characterization of tourmaline: Mössbauer study of Fe valence site occupancy. Am. Mineral. 83, 848–864 (1998)Google Scholar
  207. 207.
    S.G. Eeckhout, C. Corteel, E. Van Coster, E. De Grave, P. De Paepe, Crystal-chemical characterization of tourmalines from the English Lake District: Electron-microprobe analyses and Mössbauer spectroscopy. Am. Mineral. 89, 1743–1751 (2004)Google Scholar
  208. 208.
    B.J. Evans, S. Ghose, S.S. Hafner, Hyperfine splitting of 57Fe and Mg-Fe order-disorder in orthopyroxenes (MgSiO3–FeSiO3 solid solution). J. Geol. 75, 306–322 (1967)ADSCrossRefGoogle Scholar
  209. 209.
    M.D. Dyar, R.L. Klima, D. Lindsley, C.M. Pieters, Effects of differential recoil-free fraction on ordering and site occupancies in Mössbauer spectroscopy of orthopyroxenes. Am. Mineral. 92, 424–428 (2007)CrossRefGoogle Scholar
  210. 210.
    S.G. Eeckhout, E. De Grave, C.A. McCammon, R. Vochten, Temperature dependence of the hyperfine parameters in synthetic P21/c Mg-Fe pyroxenes along the MgSiO3-FeSiO3 join. Am. Mineral. 85, 943–952 (2000)Google Scholar
  211. 211.
    G.M. Bancroft, P.G.L. Williams, R.G. Burns, Mössbauer spectra of minerals along the diopside—hedenbergite tie line. Am. Mineral. 56, 1617–1625 (1971)Google Scholar
  212. 212.
    S.G. Eeckhout, E. De Grave, 57Fe Mössbauer-effect studies of Ca-rich, Fe-bearing clinopyroxenes: Part I. Paramagnetic spectra of magnesian hedenbergite. Am. Mineral. 88, 1128–1137 (2003)Google Scholar
  213. 213.
    E. De Grave, S.G. Eeckhout, 57Fe Mössbauer-effect studies of Ca-rich, Fe-bearing clino-pyroxenes: Part III Diopside. Am. Mineral. 88, 1145–1152 (2003)Google Scholar
  214. 214.
    E. Dowty, D.H. Lindslay, Mössbauer spectra of synthetic hedenbergite-ferrosilite pyroxenes. Am. Mineral. 58, 850–868 (1973)Google Scholar
  215. 215.
    L.P. Aldridge, G.M. Bancroft, M.E. Fleet, C.T. Herzberg, Omphacite studies; II, Mössbauer spectra of C2/c and P2/n omphacites. Am. Mineral. 63, 1107–1115 (1978)Google Scholar
  216. 216.
    E. De Grave, A. Van Alboom, S.G. Eeckhout, Electronic and magnetic properties of a natural aegirine as observed from its Mössbauer spectra. Phys. Chem. Miner. 25, 378–388 (1998)ADSCrossRefGoogle Scholar
  217. 217.
    W.R. Nelson, D.T. Griffen, Crystal chemistry of Zn-rich rhodonite (“fowlerite”). Am. Mineral. 90, 969–983 (2005)CrossRefGoogle Scholar
  218. 218.
    D.T. Griffen, W.R. Nelson, Mössbauer spectroscopy of Zn-poor and Zn-rich rhodonite. Am. Mineral. 92, 1486–1491 (2007)CrossRefGoogle Scholar
  219. 219.
    F.A. Seifert, D. Virgo, Kinetics of the Fe2+-Mg, order-disorder reaction in anthophyllites: quantitative cooling rates. Science 188, 1107–1109 (1975)ADSCrossRefGoogle Scholar
  220. 220.
    G.M. Bancroft, R.G. Burns, A.G. Maddock, Determination of cation distribution in the cummingtonite-grunerite series by Mössbauer spectra. Am. Mineral. 52, 1009–1026 (1967)Google Scholar
  221. 221.
    G.M. Bancroft, A.G. Maddock, Cation distribution in anthophyllite from Mössbauer and infra-red spectroscopy. Nature 212, 913–915 (1966)ADSCrossRefGoogle Scholar
  222. 222.
    M. Schindler, E. Sokolova, Y. Abdu, F.C. Hawthorne, B.W. Evans, K. Ishida, The crystal chemistry of the gedrite-group amphiboles. I. Crystal structure and site populations. Miner. Mag. 72, 703–730 (2008)CrossRefGoogle Scholar
  223. 223.
    F.S. Spears, The gedrite-anthophyllite solvus and the composition limits of orthoamphibole from the Post Pond Volcanics, Vermont. Am. Mineral. 65, 1103–1118 (1980)Google Scholar
  224. 224.
    A.D. Law, E.J.W. Whittaker, Studies of the orthoamphiboles.1. The Mössbauer and infrared spectra of holmquistite. Bull. Mineral. 104, 381–386 (1981)Google Scholar
  225. 225.
    R.G. Burns, C. Greaves, Correlations of infrared and Mössbauer site population measurements of actinolites. Am. Mineral. 56, 2010–2033 (1971)Google Scholar
  226. 226.
    D.S. Goldman, A reevaluation of the Mössbauer spectroscopy of calcic amphiboles. Am. Mineral. 64, 109–118 (1979)Google Scholar
  227. 227.
    G.M. Bancroft, R.G. Burns, A.J. Stone, Applications of the Mössbauer effect to silicate mineralogy. II. Iron silicates of unknown and complex crystal structures. Geochim. Cosmochim. Acta 32, 547–559 (1968)ADSCrossRefGoogle Scholar
  228. 228.
    G.M. Bancroft, R.G. Burns, Mössbauer and absorption spectral study of alkali amphiboles. Mineral. Soc. Am. Spec. Pap. 2, 137–148 (1969)Google Scholar
  229. 229.
    D.G. Rancourt, Mössbauer spectroscopy of minerals: I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole distributions. Phys. Chem. Miner. 21, 244–249 (1994)ADSCrossRefGoogle Scholar
  230. 230.
    J. De Grave, P. De Paepe, E. De Grave, R. Vochten, S.G. Eeckhout, Mineralogical and Mössbauer spectroscopic study of a diopside occurring in the marbles of Andranondamo, southern Madagascar. Am. Mineral. 87, 132–141 (2002)Google Scholar
  231. 231.
    A. Van Alboom, E. De Grave, Temperature dependence of the 57Fe Mössbauer parameters in riebeckite. Phys. Chem. Miner. 23, 377–386 (1996)ADSCrossRefGoogle Scholar
  232. 232.
    R.G. Burns, M.D. Dyar, Crystal chemistry and Mössbauer spectra of babingtonite. Am. Mineral. 76, 892–899 (1991)Google Scholar
  233. 233.
    G. Amthauer, K. Langer, M. Schliestedt, Thermally activated electron delocalization in deerite. Phys. Chem. Miner. 6, 19–30 (1980)ADSCrossRefGoogle Scholar
  234. 234.
    E. Murad, U. Wagner, Mössbauer spectra of kaolinite, halloysite and the firing products of kaolinite: new results and a reappraisal of published work. N. Jb Miner. Abh. 162, 281–309 (1991)Google Scholar
  235. 235.
    I. Rozenson, E.R. Bauminger, L. Heller-Kallai, Mössbauer spectra of iron in 1:1 phyllosilicates. Am. Mineral. 64, 893–901 (1979)Google Scholar
  236. 236.
    D.S. O’Hanley, M.D. Dyar, The composition of lizardite 1 T and the formation of magnetite in serpentinite. Am. Mineral. 78, 391–404 (1993)Google Scholar
  237. 237.
    J.M.D. Coey, A. Moukarika, C.M. McDonagh, Electron hopping in cronstedtite. Solid State Commun. 41, 797–800 (1982)ADSCrossRefGoogle Scholar
  238. 238.
    O. Ballet, J.M.D. Coey, Greenalite—A clay showing two-dimensional magnetic order. J. Phys. C6(39), 765–766 (1978)Google Scholar
  239. 239.
    K.J.D. Mackenzie, R.M. Berezowski, Thermal and Mössbauer studies of iron-containing hydrous silicates. V. Berthierine. Thermochimica Acta 74, 291–312 (1984)Google Scholar
  240. 240.
    J.M.D. Coey, Mössbauer spectroscopy of silicate minerals, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 1, ed. by G.J. Long (Plenum, New York, 1984), pp. 443–509Google Scholar
  241. 241.
    J.H. Johnston, C.M. Cardile, Iron substitution in montmorillonite, illite and glauconite by 57Fe Mössbauer spectroscopy. Clays Clay Miner. 35, 170–176 (1987)CrossRefGoogle Scholar
  242. 242.
    E. Murad, J. Cashion, Mössbauer spectroscopy of environmental materials and their industrial utilization (Kluwer, Boston, 2004)CrossRefGoogle Scholar
  243. 243.
    E. Murad, U. Wagner, Mössbauer spectrum of illite. Clay Miner. 29, 1–10 (1994)CrossRefGoogle Scholar
  244. 244.
    E. De Grave, J. Vandenbruwaene, E. Elewaut, An 57Fe Mössbauer effect study on glauconites from different locations in Belgium and northern France. Clay Miner. 20, 171–179 (1985)CrossRefGoogle Scholar
  245. 245.
    L.H. Bowen, E. De Grave, D.A. Reid, R.C. Graham, S.B. Edinger, Mössbauer study of a California desert celadonite and its pedogenically-related smectite. Phys. Chem. Miner. 16, 697–703 (1989)ADSCrossRefGoogle Scholar
  246. 246.
    J.M.D. Coey, T. Bakas, S. Guggenheim, Mössbauer spectra of minnesotaite and ferrous talc. Am. Mineral. 76, 1905–1909 (1991)Google Scholar
  247. 247.
    O. Ballet, J.M.D. Coey, Magnetic properties of sheet silicates; 2:1layer minerals. Phys. Chem. Miner. 8, 218–229 (1982)ADSCrossRefGoogle Scholar
  248. 248.
    C. Blaauw, G. Stroink, W. Leiper, Mössbauer analysis of talc and chlorite. J. Phys. C141, 411–412 (1980)Google Scholar
  249. 249.
    M.D. Dyar, R.G. Burns, Mössbauer spectral study of ferriginous one-layer trioctahedral micas. Am. Mineral. 71, 955–965 (1986)Google Scholar
  250. 250.
    M.D. Dyar, A review of Mössbauer data on trioctahdral micas: Evidence of tetrahedral Fe3+ and cation ordering. Am. Mineral. 72, 102–112 (1987)Google Scholar
  251. 251.
    E. De Grave, J. Vandenbruwaene, M. Van Bockstael, Mössbauer spectroscopic analysis of chlorite. Phys. Chem. Miner. 15, 173–180 (1987)ADSCrossRefGoogle Scholar
  252. 252.
    S.G. Eeckhout, E. De Grave, R. Vochten, N.M. Blaton, Mössbauer effect study of anapaite, Ca2Fe2+(PO4)2.4H2O, and of its oxidation products. Phys. Chem. Minerals 26, 506–512 (1999)ADSCrossRefGoogle Scholar
  253. 253.
    G.M. da Costa, R. Scholz, J. Karfunkel, V. Bermanec, M.L.S.C. Chavez, 57Fe-Mössbauer spectroscopy on natural eosphorite-childrenite-ernstite samples. Phys. Chem. Miner. 31, 714–720 (2005)CrossRefGoogle Scholar
  254. 254.
    R. Vochten, E. De Grave, Mössbauer- and infrared spectroscopic characterization of ferristrunzite from Blaton, Belgium. N. Jb. Miner. Mh. 176–190 (1990)Google Scholar
  255. 255.
    R. Vochten, E. De Grave, K. Van Springel, L. Van Haverbeke, Mineralogical and Mössbauer spectroscopic study of some strunzite varieties of the Silbergrube, Waidhaus, Oberpfalz, Germany. N. Jb. Mineral. Mh. 11–25 (1995)Google Scholar
  256. 256.
    R. Van Tassel, E. De Grave, Ferrostrunzite from Arnsberg, Sauerland, Germany. N. Jb. Miner. Mh. 207–212 (1992)Google Scholar
  257. 257.
    U. Gonser, R.W. Grant, Determination of spin directions and electric field gradient axis in vivianite by polarized recoil-free γ-rays. Phys. Stat. Sol. 21, 331–342 (1967)ADSCrossRefGoogle Scholar
  258. 258.
    J.R. Forsyth, C.E. Johnston, C. Wilkinson, The magnetic structure of vivianite, Fe3(PO4)2.8H2O. J. Phys. C: Solid State Phys. 3, 1127–1139 (1970)ADSCrossRefGoogle Scholar
  259. 259.
    E. De Grave, 57Fe-Mössbauerspectroscopie: fundamentele bijdragen en praktische toepassingen in de fysika, de mineralogie en de technologie. (Thesis Hoger Aggregaat, University of Gent) 1983Google Scholar
  260. 260.
    E. De Grave, R. Vochten, M. Desseyn, D. Chambaere, Analysis of some oxidized vivianites. J. Phys. (Paris) Colloq. 41, 407–408 (1980)Google Scholar
  261. 261.
    C.A. McCammon, R.G. Burns, The oxidation mechanism of vivianite as studied by Mössbauer spectroscopy. Am. Mineral. 65, 361–366 (1980)Google Scholar
  262. 262.
    J.L. Dormann, M. Gaspérin, J.F. Poullen, Etude structural de la séquence d’oxydation de la vivianite Fe3(PO4)2.8H2O. Bull. Minér. 105, 147–160 (1982)Google Scholar
  263. 263.
    L. Aldon, A. Perea, M. Womes, C.M. Ionica-Bousquet, J.-C. Jumas, Determination of the Lamb-Mössbauer fractions of of LiFePO4 and FePO4 for electrochemical in situ and operando measurements in Li-ion batteries. J. Solid State Chem. 183, 218–222 (2010)ADSCrossRefGoogle Scholar
  264. 264.
    A. Van Alboom, E. De Grave, M. Wolfahrt-Mehrens, Temperature dependence of the Fe2+ Mössbauer parameters in triphylite (LiFePO4). Am. Mineral. 96, 408–416 (2011)CrossRefGoogle Scholar
  265. 265.
    A. Yamada, S. Chung, Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as possible 4 V cathode materials for lithium batteries. J. Electrochem. Soc. 148, A960–A967 (2001)ADSCrossRefGoogle Scholar
  266. 266.
    T.H. Fehr, R. Hochleitner, A. Laumann, E. Schmidbauer, J. Schneider, Mineralogy, Mössbauer spectroscopy and electrical conductivity of heterosite (Fe3+,Mn3+)PO4. Phys. Chem. Miner. 37, 179–189 (2010)ADSCrossRefGoogle Scholar
  267. 267.
    V.G. de Resende, G.M. da Costa, E. De Grave, A. Van Alboom, Mössbauer spectroscopic study of synthetic leucophosphite, KFe2(PO4)2(OH).2H2O. Am. Mineral. 93, 483–498 (2008)CrossRefGoogle Scholar
  268. 268.
    G. Le Caër, J.M. Dubois, H. Fisher, U. Gonser, H.G. Wagner, On the validity of 57Fe hyperfine field distribution calculations from Mössbauer spectra of magnetic amorphous alloys. Nucl. Instrum. Meth. Phys. Res. B 5, 25–33 (1984)ADSCrossRefGoogle Scholar
  269. 269.
    R.E. Vandenberghe, E. Van Ranst, E. De Grave, Mössbauer study of a South African Griffin Farmhill soil profile. ICAME 2005, Montpellier, Book of Abstracts (2005)Google Scholar
  270. 270.
    E. Van Ranst, M. Dumon, A.R. Tolossa, J-Th Cornelis, G. Stoops, R.E. Vandenberghe, R.J. Deckers, Revisiting ferrolysis processes in the formation of Planosols for rationalizing the soils with stagnic properties in WRB. Geoderma 163, 265–274 (2011)CrossRefGoogle Scholar
  271. 271.
    E. Banks, E. Kostiner, G.K. Wertheim, Mössbauer effect in MnFeO3. J. Chem. Phys. 45, 1189–1191 (1966)ADSCrossRefGoogle Scholar
  272. 272.
    S.N. de Medeiros, A. Luciano, L.F. Cótica, I.A. Santos, A. Paesano Jr, J.B.M. da Cunha, Structural and magnetic characterization of the ball-milled α-Fe2O3 –Mn2O3 and α-Fe–Mn2O3 systems. J. Magn. Magn. Mater. 281, 227–233 (2004)ADSCrossRefGoogle Scholar
  273. 273.
    J.M. Han, J.J. Hus, R. Paepe, R.E. Vandenberghe, T.S. Liu, The rock magnetic properties of the Malan and Lishi formations in the loess plateau of China, in Loess, Environment and Global Change, ed. by Liu Tungsheng (Science Press, Beijing, 1991), pp. 30–47Google Scholar
  274. 274.
    R.E. Vandenberghe, E. De Grave, J.J. Hus, J. Han, Characterization of Chinese loess and associated palaeosol by Mössbauer spectroscopy. Hyp. Interact. 70, 977–980 (1992)ADSCrossRefGoogle Scholar
  275. 275.
    R.E. Vandenberghe, J.J. Hus, E. De Grave, Evidence from Mössbauer spectroscopy of neo-formation of magnetite/maghemite in the soils of loess/palaeosol sequences in China. Hyp. Interact. 117, 359–369 (1998)ADSCrossRefGoogle Scholar
  276. 276.
    R.C. Mercader, F.R. Sives, P.A. Imbellone, R.E. Vandenberghe, Magnetic and Mössbauer studies of quaternary Argentine loessic soils and paleosols. Hyp. Interact. 161, 43–53 (2005)ADSCrossRefGoogle Scholar
  277. 277.
    C. Algoe, G. Stoops, R.E. Vandenberghe, E. Van Ranst, Selective dissolution of Fe-Ti oxides—Extractable iron as a criterion for andic properties revisited. Catena 92, 49–54 (2011)CrossRefGoogle Scholar
  278. 278.
    E. De Grave, G.M. Da Costa, L.H. Bowen, C.A. Barrero, R.E. Vandenberghe, Characterization of soil-related analogs by applied-field 57Mössbauer spectroscopy. Hyp. Interact. 117, 245–270 (1998)ADSCrossRefGoogle Scholar
  279. 279.
    R.B. Scorzelli, Application of the Mössbauer effect to the study of meteorites—A review. Hyp. Interact. 66, 249–257 (1991)ADSCrossRefGoogle Scholar
  280. 280.
    R.B. Scorzelli, Meteorites: Messengers from the outer space. J. Braz. Chem. Soc. 19, 226–231 (2008)CrossRefGoogle Scholar
  281. 281.
    J. Danon, R.B. Scorzelli, I. Souza-Azevedo, J. Laugier, A. Chamberod, Santa Catharina meteorite and phase composition of irradiated Fe–Ni Invar alloys. Nature 284, 537–538 (1980)ADSCrossRefGoogle Scholar
  282. 282.
    R.B. Scorzelli, I.S. Azevedo, J. Danon, M.A. Meyers, Mössbauer study of shock-induced effects in the ordered alloy Fe50Ni50 in meteorites. J. Phys. F. Met. Phys. 17, 1993–1997 (1987)ADSCrossRefGoogle Scholar
  283. 283.
    R.B. Scorzelli, J. Danon, Mössbauer spectroscopy and X-ray diffraction studies of Fe–Ni order-disorder processes in a 35 % Ni meteorite (Santa Catharina). Phys. Scr. 32, 143–148 (1985)ADSCrossRefGoogle Scholar
  284. 284.
    E. De Grave, R.E. Vandenberghe, P.M.A. De Bakker, A. Van Alboom, R. Vochten, R. Van Tassel, Temperature dependence of the Mössbauer parameters of the FeNi phases in the Santha Catharina meteorite. Hyp. Interact. 70, 1009–1012 (1992)ADSCrossRefGoogle Scholar
  285. 285.
    E. De Grave, R.J. Pollard, R.E. Vandenberghe, P.M.A. De Bakker, The effect of high external magnetic fields on the hyperfine interactions in the Fe-Ni phases of the Santa Catharina meteorite. Hyp. Interact. 94, 2349–2353 (1992)CrossRefGoogle Scholar
  286. 286.
    D.G. Rancourt, R.B. Scorzelli, Low spin γ-Fe-Ni (γLS) proposed as a new mineral in Fe-Ni-bearing meteorites: epitaxial intergrowth of γLS and tetrataenite as possible equilibrium state at ~20–40 at % Ni. J. Magn. Magn. Mat. 150, 30–36 (1995)ADSCrossRefGoogle Scholar
  287. 287.
    C.L. Herzenberg, D.L. Riley, Mössbauer spectrometry of lunar samples. Science 167, 683–686 (1970)ADSCrossRefGoogle Scholar
  288. 288.
    P. Gay, G.M. Bancroft, M.G. Bown, Diffraction and Mössbauer studies of minerals from lunar soils and rocks. Science 167, 626–628 (1970)ADSCrossRefGoogle Scholar
  289. 289.
    J. Duchesne, J. Depireux, A. Gérard, F. Grandjean, M. Read, Study with Mössbauer spectrometry on iron distribution in mineralogical fractions separated by lunar rocks reported by Apollo-12. Bull. Cl. Sci. Acad. R. Belg. 57, 1204–1211 (1971)ADSGoogle Scholar
  290. 290.
    T.C. Gibb, R. Greatrex, N.N. Greenwood, An assessment of results obtained from Mössbauer spectra of lunar samples. Phil. Trans. R. Soc. Lond. A 285, 235–240 (1977)ADSCrossRefGoogle Scholar
  291. 291.
    R.V. Morris, G. Klingelhöfer, R.L. Korotev, T.D. Shelfer, Mössbauer mineralogy on the Moon: The lunar regolith. Hyp. Interact. 117, 405–432 (1998)ADSCrossRefGoogle Scholar
  292. 292.
    G. Klingelhöfer, In situ analysis of planetary surfaces by Mössbauer spectroscopy. Hyp. Interact. 113, 369–374 (1998)ADSCrossRefGoogle Scholar
  293. 293.
    G. Klingelhöfer, R.V. Morris, B. Bernhardt, D. Rodionov, P.A. de Souza, S.W. Squyres, J. Foh, E. Kankeleit, R. Gellert, C. Schröder, S. Linkin, E. Evlanov, B. Zubkov, O. Prilutski, Athena MIMOS II Mössbauer spectrometer investigation. J. Geophys. Res. Planets 108, 8067 (2003)ADSCrossRefGoogle Scholar
  294. 294.
    R.V. Morris, G. Klingelhöfer, B. Bernhardt, C. Schröder, D.S. Rodionov, P.A. De Souza Jr, A. Yen, R. Gellert, E.N. Evlanov, J. Foh, E. Kankeleit, P. Gütlich, D.W. Ming, F. Renz, T. Wdowiak, S.W. Squyres, R.E. Arvidson, Mineralogy at Gusev Crater from the Mössbauer spectrometer on the Spirit Rover. Science 305, 833–836 (2004)ADSCrossRefGoogle Scholar
  295. 295.
    R.V. Morris, G. Klingelhöfer, C. Schröder, D.S. Rodionov, A. Yen, D.W. Ming, P.A. De Souza Jr, I. Fleischer, T. Wdowiak, R. Gellert, B. Bernhardt, E.N. Evlanov, B. Zubkov, J. Foh, E. Kankeleit, U. Bonnes, P. Gütlich, F. Renz, S.W. Squyres, R.E. Arvidson, Mössbauer mineralogy of rock, soil, and dust at Gusev Crater, Mars: Spirit’s journey through weakly altered olivine basalt on the Plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res. 111, E02S13 (2006)ADSCrossRefGoogle Scholar
  296. 296.
    R.V. Morris, G. Klingelhöfer, C. Schröder, D.S. Rodionov, A. Yen, D.W. Ming, P.A. De Souza Jr, T. Wdowiak, I. Fleischer, R. Gellert, B. Bernhardt, U. Bonnes, B.A. Cohen, E.N. Evlanov, J. Foh, P. Gütlich, E. Kankeleit, T. McCoy, D.W. Mittlefehldt, F. Renz, M.E. Schmidt, B. Zubkov, S.W. Squyres, R.E. Arvidson, Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. 111, E12S15 (2006)ADSCrossRefGoogle Scholar
  297. 297.
    G. Klingelhöfer, R.V. Morris, B. Bernhardt, C. Schröder, D.S. Rodionov, P.A. de Souza, A. Yen, R. Gellert, E.N. Evlanov, E. Kankeleit, P. Gütlich, D.W. Ming, F. Renz, T. Wdowiak, S.W. Squyres, R.E. Arvidson, Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306, 1740–1745 (2004)ADSCrossRefGoogle Scholar
  298. 298.
    G. Klingelhöfer, E. De Grave, R.V. Morris, A. Van Alboom, V.G. de Resende, P.A. De Souza, D. Rodionov, C. Schröder, D.W. Ming, A. Yen, Mössbauer spectroscopy on Mars: goethite in the Columbia Hills at Gusev crater. Hyp. Interact. 166, 549–554 (2006)ADSCrossRefGoogle Scholar
  299. 299.
    C. Van Cromphaut, V.G. de Resende, E. De Grave, A. van Alboom, R.E. Vandenberghe, G. Klingelhöfer, Characterisation of the magnetic iron phases in Clovis Class rocks in Gusev crater from the MER Spirit Mössbauer spectrometer. Geochim. Cosmochim. Acta 71, 4814–4822 (2007)ADSCrossRefGoogle Scholar
  300. 300.
    C. Van Cromphaut, V.G. de Resende, E. De Grave, R.E. Vandenberghe, Temperature dependence of the hyperfine parameters of the iron bearing phases in the Mössbauer spectra collected by the Mars Exploration Rover Spirit. Hyp. Interact. 190, 143–148 (2009)ADSCrossRefGoogle Scholar
  301. 301.
    D.G. Agresti, I. Fleischer, G. Klingelhöfer, R.V. Morris, On simfitting MER Mössbauer data to characterize Martian hematite. J. Phys. Conf. Ser. 217, 012063 (2010)ADSCrossRefGoogle Scholar
  302. 302.
    C. Schröder, D.S. Rodionov, T.J. McCoy, B.L. Jolliff, R. Gellert, L.R. Nittler, W.H. Farrand, J.R. Johnson, S.W. Ruff, J.W. Ashley, D.W. Mittlefehldt, K.E. Herkenhoff, I. Fleischer, A.F.S. Haldemann, G. Klingelhöfer, D.W. Ming, R.V. Morris, P.A. De Souza Jr, S.W. Squyres, C. Weitz, A.S. Yen, J. Zipfel, T. Economou, Meteorites on Mars observed with the Mars Exploration Rovers. J. Geophys. Res. 113, 06 (2007)Google Scholar
  303. 303.
    D. Rodionov, C. Schröder, G. Klingelhöfer, R.V. Morris, T. Wdowiak, P.A. de Souza Jr, A. Yen, T. Wdowiak, S.W. Squyres, And the Athena Science Team: Mössbauer investigation of “Bounce Rock” at Meridiani Planum on Mars—Indications for the first shergottite on Mars. Meteorit. Planet. Sci. 39, A91 (2004)Google Scholar
  304. 304.
    C. Schröder, R. Gellert, B.L. Jolliff, G. Klingelhöfer, T.J. McCoy, R.V. Morris, D.S. Rodionov, P.A. De Souza Jr, A.S. Yen, J. Zipfel, And the Athena Science team: A stony meteorite discovered by the Mars Exploration Rover Opportunity on Meridiani Planum. Mars. Meteorit. Planet. Sci. 41, 5285 (2006)Google Scholar
  305. 305.
    M. Blumers, B. Bernhardt, P. Lechner, G. Klingelhöfer, C. d’Uston, H. Soltau, L. Strüder, R. Eckhardt, J. Brückner, H. Henkel, J.G. Lopez, J. Maul, The miniaturized Mössbauer spectrometer MIMOS IIA: Increased sensitivity and new capability for elemental analysis. Nucl. Instrum. Methods: Phys. Res. A 624, 277–281 (2010)ADSCrossRefGoogle Scholar
  306. 306.
    D. Chambaere, Studie van de strukturele en magnetische eigenschappen van β-FeOOH en van zijn fasetransformatie naar αFe2O3. Ph.D. thesis, (Ghent University, 1983)Google Scholar
  307. 307.
    B.J. Evans, R.G. Johnson, F.E. Senftle, C.B. Cecil, F. Dulong, The 57Fe Mössbauer parameters of pyrite and marcasite with different provenances. Geochim. Cosmochim. Acta 46, 761–775 (1982)ADSCrossRefGoogle Scholar
  308. 308.
    S.G. Eeckhout, C. Casteñeda, A.C.M. Ferreira, A. Sabioni, E. De Grave, D.C.L. Vasconcelos, Spectroscopic studies of spessartine from Brazilian pegmatites. Am. Mineral. 87, 1297–1306 (2002)Google Scholar
  309. 309.
    E. De Grave, S. Geets, 57 Fe Mössbauermetingen aan Belgische Glauconieten. Bull. Soc. Belge Géol. 88, 237–251 (1979)Google Scholar
  310. 310.
    E. De Grave, A. Van Alboom, Evaluation of ferrous and ferric Mössbauer fractions. Phys. Chem. Miner. 18, 337–342 (1991)ADSCrossRefGoogle Scholar
  311. 311.
    W. Stiers, U. Schwertmann, Evidence for manganese substitution in synthetic goethite. Geochim. Cosmochim. Acta 49, 1909–1911 (1985)ADSCrossRefGoogle Scholar
  312. 312.
    D.J. Vaughan, M.S. Ridout, Mössbauer study of pyrrhotite (Fe7S8). Solid State Commun. 8, 2165–2167 (1970)ADSCrossRefGoogle Scholar
  313. 313.
    H.V. Varma, J. Varma, Mössbauer effect study of natural staurolite. Phys. Stat. Solidi (a) 97, 275–278 (1986)MathSciNetADSCrossRefGoogle Scholar
  314. 314.
    F. Seifert, A note on the Mössbauer spectrum of 57Fe in ferrocarpholite. Mineral. Mag. 43, 313–315 (1979)CrossRefGoogle Scholar
  315. 315.
    Y. Fuchs, M. Mellini, I. Memmi, Crystal-chemistry of magnesiocarpholite: controversial X-ray diffraction, Mössbauer, FTIR and Raman results. Eur. J. Mineral. 13, 533–543 (2001)CrossRefGoogle Scholar
  316. 316.
    L.G. Dainyak, V.A. Drits, Interpretation of the Mössbauer spectra of nontronite, celadonite and glauconite. Clays Clay Miner. 35, 363–372 (1987)CrossRefGoogle Scholar
  317. 317.
    H. Kodoma, G. Longworth, M.G. Townsend, A Mössbauer investigation of some chlorites and their oxidation products. Can. Mineral. 20, 585–590 (1982)Google Scholar
  318. 318.
    D.G. Agresti, M.D. Dyar, M.W. Schaefer, Velocity calibration for in situ Mössbauer data from Mars. Hyp. Interact. 167, 845–850 (2006)ADSCrossRefGoogle Scholar
  319. 319.
    C. Van Cromphaut, V.G. de Resende, E. De Grave, R.E. Vandenberghe, Mössbauer study of Meridiani Planum, the first iron-nickel meteorite found on the surface of Mars by the MER Opportunity. Meteorit. Planet. Sci. 42, 2119–2123 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert E. Vandenberghe
    • 1
  • Eddy De Grave
    • 1
  1. 1.Department of Physics and AstronomyGhent UniversityGhentBelgium

Personalised recommendations