Advertisement

General Introduction to Mössbauer Spectroscopy

  • Saburo Nasu
Chapter

Abstract

This chapter describes a general introduction of the Mössbauer spectroscopy. What is the Mössbauer effect and what is the characteristic feature of the Mössbauer spectroscopy? These questions are answered briefly in this chapter. Mössbauer spectroscopy is based on recoilless emission and resonant absorption of gamma radiation by atomic nuclei. Since the electric and magnetic hyperfine interactions of Mössbauer probe atom in solids can be described from the Mössbauer spectra, the essence of experiments, the hyperfine interactions and the spectral line shape are discussed. In addition, the experiments and the new resonance technique with synchrotron radiation have been also briefly described.

Keywords

Synchrotron Radiation Isomer Shift Hyperfine Interaction Quadrupole Splitting Active Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Author would like to express his sincere thanks for the late professors Uli Gonser and the late F. Eiichi Fujita. Both professors lead him to the field of science and especially to the Mössbauer spectroscopy. He is also greatly indebted to Prof. T. Shinjo for his guidance and encouragement in the study using Mössbauer spectroscopy.

References

  1. 1.
    R.L. Mössbauer, Z. Physik 151, 124 (1958)ADSCrossRefGoogle Scholar
  2. 2.
    R.L. Mössbauer, Z. Naturwissenshaften 45, 538 (1958)ADSCrossRefGoogle Scholar
  3. 3.
    R. L. Mössbauer, Z. Naturforsch 14a, 211 (1959)Google Scholar
  4. 4.
    R. L. Mössbauer, Nobel Lecture December 11 (1961)Google Scholar
  5. 5.
    H. Frauenfelder, The Mössbauer Effect, Frontiers in Physics (W. A. Benjamin, Inc., New York 1963)Google Scholar
  6. 6.
    G. K. Wertheim, Mössbauer Effect: Principles and Applications (Academic Press, New York, 1964)Google Scholar
  7. 7.
    L. May (ed.), An Introduction to Mössbauer Spectroscopy (Plenum Press, New York, 1971)Google Scholar
  8. 8.
    N.N. Greenwood, T.C. Gibb, Mössbauer Spectroscopy (Chapman and Hall Ltd, London, 1971)CrossRefGoogle Scholar
  9. 9.
    U. Gonser (ed.), Mössbauer Spectroscopy, Topics in Applied Physics, vol. 5 (Heidelberg, New York, 1975)Google Scholar
  10. 10.
    R.L. Cohen (ed.), Application of Mössbauer Spectroscopy, vol. I (Academic Press, New York, 1976)Google Scholar
  11. 11.
    R.L. Cohen (ed.), Application of Mössbauer Spectroscopy, vol. II (Academic Press, New York, 1980)Google Scholar
  12. 12.
    U. Gonser (ed.): Mössbauer Spectroscopy II. The Exotic Side of the Method, Topics in Current Physics (Springer, Heidelberg, New York, 1981)Google Scholar
  13. 13.
    P. Gütlich, R. Link, A.X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry, Inorganic Chemistry Concepts 3 (Springer, Heidelberg, 1978)Google Scholar
  14. 14.
    T.C. Gibb, Principles of Mössbauer Spectroscopy Studies in Chemical Physics (Chapman and Hall, London, 1976)Google Scholar
  15. 15.
    I.J. Gruverman (ed.), Mössbauer Effect Methodology, vol 1–10 (Plenum Press, New York, 1965–1975)Google Scholar
  16. 16.
    K. Siegbahn (ed.), α,β,γ Ray Spectroscopy, vol. 2 (North-Holland Publishing Company, Amsterdam, 1965), p. 863Google Scholar
  17. 17.
    C.M. Lederer, J.M. Hollander, I. Perlman, Table of Isotopes, 6th edn. (Wiley, New York, 1968), p. 191Google Scholar
  18. 18.
    S. Margulies, J.R. Ehrman, Nuclear Inst. Meth. 12, 131 (1961)ADSCrossRefGoogle Scholar
  19. 19.
    M. Celia Dibar-Ure, P.A. Flinn, Mössbauer Effect Methodology, vol 7, ed. by. J. Gruverman, C.W. Seidel, D.K. Dieterly (Plenum Press, New York, 1974), p. 245Google Scholar
  20. 20.
    R. Kato, Y. Tamada, T. Ono, S. Nasu, Jpn. J. Appl. Phys. 49, 033003 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    R.V. Pound, G.A. Rebka Jr, Phys. Rev. Lett. 4, 337 (1960)ADSCrossRefGoogle Scholar
  22. 22.
    W. Kundig, Nucl. Inst. Methods 48, 219 (1967)ADSCrossRefGoogle Scholar
  23. 23.
    G.R. Hoy, S. Chandra, J. Chem. Phys. 47, 961 (1967)ADSCrossRefGoogle Scholar
  24. 24.
    S. Dattagupta, Relaxation Phenomena in Condensed Matter Physics (Academic Press, Orlando, 1987)Google Scholar
  25. 25.
    J. L. Dormann, D. Fiorani, E. Tronc, Magnetic Relaxation in Fine-Particle Systems Advances in Chemical Physics, vol XCVIII (Wiley, New York, 1997)Google Scholar
  26. 26.
    E. Gerdau, H. de Waard (eds.), Hyperfine Interactions, vol. 123–125 (Baltzer Science Publishers, The Netherlands, 1999/2000)Google Scholar
  27. 27.
    Y. Yoda, Presentation in JSPS Belgium-Japan Binational Seminar (2003)Google Scholar
  28. 28.
    S.L. Ruby, J. Phys. C6, 209 (1974)Google Scholar
  29. 29.
    M. Seto, Y. Yoda, S. Kikuta, X.W. Zhang, M. Ando, Phys. Rev. Lett. 74, 3828 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    W. Sturhahn, T.S. Toellner, E.E. Alp, X.W. Zhang, M. Ando, Y. Yoda, S. Kikuta, M. Seto, C.W. Kimball, B. Dabrowski, Phys. Rev. Lett. 74, 3832 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Osaka UniversityToyonakaJapan

Personalised recommendations