Mapping of Inland Waters Using Radar

  • Matthias Greuter
  • Michael Blaich
  • Michael Schuster
  • Johannes Reuter
  • Matthias Franz
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Abstract

This paper presents a mapping approach for inland waters using a noisy radar sensor installed on a boat. The vessel’s position is acquired from GPS, thus this is a pure mapping problem. For the actual mapping the probabilistic open-source mapping framework octomap as presented by [8] is used. Exactly one polygon is extracted from a binary radar image, the so-called Water Enclosing Polygon. This discards inland echos and multi-path measurements. Additionally, an approach to detect bridges and dolphins is presented. The runtime of the mapping algorithm is less then 2.5 s. Thus, each new radar scan is integrated into the octomap.

Keywords

Radar Image Sensor Model Foreground Pixel Autonomous Navigation Shore Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Cormen, T.H.: Introduction to Algorithms. The MIT press, Cambridge (2001)MATHGoogle Scholar
  2. Foessel-Bunting, A., Bares, J., Whittaker, W.L.: Three-dimensional map building with mmw radar. In: Halme, R.C.A Prassler, E. (eds.) Proceedings of the International Conference on Field and Service Robotics, Helsinki, Finland (2001)Google Scholar
  3. Foessel, A.: Scene modeling from motion-free radar sensing. Variations 3, 2 (1999)Google Scholar
  4. Flusser, J., Suk, T., Zitov, B., Ebrary, I.: Moments and Moment Invariants in Pattern Recognition. Wiley Online Library, Chichester (2009)MATHCrossRefGoogle Scholar
  5. T. Gern.: Automatische Flußkartengenerierung. Ph.D.thesis, University Stuttgart (2001)Google Scholar
  6. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision, vol. 5. McGraw-Hill, New York (1995)Google Scholar
  7. Kraetzschmar, G.K., Gassull, G.P., Uhl, K.: Probabilistic quadtrees for variable-resolution mapping of large environments. In: Proceedings of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Citeseer (2004)Google Scholar
  8. Wurm, K.M., Hornung, A., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: A probabilistic, flexible, and compact 3d map representation for robotic systems. In: Proceedings of the ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation, vol. 2 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Matthias Greuter
    • 1
  • Michael Blaich
    • 1
  • Michael Schuster
    • 1
  • Johannes Reuter
    • 1
  • Matthias Franz
    • 1
  1. 1.Institute of System Dynamics KonstanzUniversity of Applied Sciences KonstanzKonstanzGermany

Personalised recommendations