Probabilistic Reasoning with a Bayesian DNA Device Based on Strand Displacement

  • Iñaki Sainz de Murieta
  • Alfonso Rodríguez-Patón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7433)


We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes’ Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro.


Conditional Probability Prior Probability Bayesian Inference Probabilistic Reasoning Genetic Diagnosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adar, R., Benenson, Y., Linshiz, G., Rosner, A., Tishby, N., Shapiro, E.: Stochastic computing with biomolecular automata. Proceedings of the National Academy of Sciences of the United States of America 101(27), 9960–9965 (2004)CrossRefGoogle Scholar
  2. 2.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  3. 3.
    Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides a computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA 100(5), 2191–2196 (2003)CrossRefGoogle Scholar
  4. 4.
    Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)CrossRefGoogle Scholar
  5. 5.
    Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414(6862), 430–434 (2001)CrossRefGoogle Scholar
  6. 6.
    Cardelli, L.: Strand Algebras for DNA Computing. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 12–24. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits Using DNA Strand Displacement. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 25–36. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Cho, E.J., Lee, J.W., Ellington, A.D.: Applications of Aptamers as Sensors. Annual Review of Analytical Chemistry 2(1), 241–264 (2009)CrossRefGoogle Scholar
  9. 9.
    Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular multi-level circuits from immobilized DNA-based logic gates. J. Am. Chem. Soc. 129(48), 14875–14879 (2007)CrossRefGoogle Scholar
  10. 10.
    Lim, H.-W., Lee, S.H., Yang, K.-A., Lee, J.Y., Yoo, S.-I., Park, T.H., Zhang, B.-T.: In vitro molecular pattern classification via dna-based weighted-sum operation. Biosystems 100(1), 1–7 (2010)CrossRefGoogle Scholar
  11. 11.
    Lipton, R.J.: DNA solution of hard computational problems. Science 268(5210), 542–545 (1995)CrossRefGoogle Scholar
  12. 12.
    Minsky, M.: Steps toward artificial intelligence. Proceedings of the IRE 49(1), 8–30 (1961)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sainz de Murieta, I., Rodríguez-Patón, A.: DNA biosensors that reason. Biosystems (in press, 2012)Google Scholar
  14. 14.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 1st edn. Morgan Kaufmann (September 1988)Google Scholar
  15. 15.
    Ran, T., Kaplan, S., Shapiro, E.: Molecular implementation of simple logic programs. Nature Nanotechnology 4(10), 642–648 (2009)CrossRefGoogle Scholar
  16. 16.
    Rodríguez-Patón, A., Larrea, J.M., Sainz de Murieta, I.: Inference with DNA Molecules. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) Unconventional Computation. LNCS, vol. 6079, p. 192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Rodríguez-Patón, A., Sainz de Murieta, I., Sosík, P.: Autonomous Resolution Based on DNA Strand Displacement. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 190–203. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall series in artificial intelligence. Prentice Hall (December 2002)Google Scholar
  19. 19.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  20. 20.
    Shortliffe, E.H., Buchanan, B.G.: A model of inexact reasoning in medicine. Mathematical Biosciences 23(3-4), 351–379 (1975)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  22. 22.
    Takahashi, K., Yaegashi, S., Kameda, A., Hagiya, M.: Chain Reaction Systems Based on Loop Dissociation of DNA. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp. 347–358. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)CrossRefGoogle Scholar
  24. 24.
    Zhang, B.-T., Jang, H.-Y.: A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 458–467. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Zhang, D.Y., Winfree, E.: Dynamic allosteric control of noncovalent dna catalysis reactions. Journal of the American Chemical Society 130(42), 13921–13926 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Iñaki Sainz de Murieta
    • 1
  • Alfonso Rodríguez-Patón
    • 1
  1. 1.Departamento de Inteligencia ArtificialUniversidad Politécnica de Madrid (UPM)Boadilla del MonteSpain

Personalised recommendations