Skip to main content

Probabilistic Reasoning with a Bayesian DNA Device Based on Strand Displacement

  • Conference paper
DNA Computing and Molecular Programming (DNA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7433))

Included in the following conference series:

Abstract

We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes’ Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adar, R., Benenson, Y., Linshiz, G., Rosner, A., Tishby, N., Shapiro, E.: Stochastic computing with biomolecular automata. Proceedings of the National Academy of Sciences of the United States of America 101(27), 9960–9965 (2004)

    Article  Google Scholar 

  2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  3. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides a computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA 100(5), 2191–2196 (2003)

    Article  Google Scholar 

  4. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)

    Article  Google Scholar 

  5. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414(6862), 430–434 (2001)

    Article  Google Scholar 

  6. Cardelli, L.: Strand Algebras for DNA Computing. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 12–24. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits Using DNA Strand Displacement. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 25–36. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Cho, E.J., Lee, J.W., Ellington, A.D.: Applications of Aptamers as Sensors. Annual Review of Analytical Chemistry 2(1), 241–264 (2009)

    Article  Google Scholar 

  9. Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular multi-level circuits from immobilized DNA-based logic gates. J. Am. Chem. Soc. 129(48), 14875–14879 (2007)

    Article  Google Scholar 

  10. Lim, H.-W., Lee, S.H., Yang, K.-A., Lee, J.Y., Yoo, S.-I., Park, T.H., Zhang, B.-T.: In vitro molecular pattern classification via dna-based weighted-sum operation. Biosystems 100(1), 1–7 (2010)

    Article  Google Scholar 

  11. Lipton, R.J.: DNA solution of hard computational problems. Science 268(5210), 542–545 (1995)

    Article  Google Scholar 

  12. Minsky, M.: Steps toward artificial intelligence. Proceedings of the IRE 49(1), 8–30 (1961)

    Article  MathSciNet  Google Scholar 

  13. Sainz de Murieta, I., Rodríguez-Patón, A.: DNA biosensors that reason. Biosystems (in press, 2012)

    Google Scholar 

  14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 1st edn. Morgan Kaufmann (September 1988)

    Google Scholar 

  15. Ran, T., Kaplan, S., Shapiro, E.: Molecular implementation of simple logic programs. Nature Nanotechnology 4(10), 642–648 (2009)

    Article  Google Scholar 

  16. Rodríguez-Patón, A., Larrea, J.M., Sainz de Murieta, I.: Inference with DNA Molecules. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) Unconventional Computation. LNCS, vol. 6079, p. 192. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Rodríguez-Patón, A., Sainz de Murieta, I., Sosík, P.: Autonomous Resolution Based on DNA Strand Displacement. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 190–203. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall series in artificial intelligence. Prentice Hall (December 2002)

    Google Scholar 

  19. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  20. Shortliffe, E.H., Buchanan, B.G.: A model of inexact reasoning in medicine. Mathematical Biosciences 23(3-4), 351–379 (1975)

    Article  MathSciNet  Google Scholar 

  21. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  22. Takahashi, K., Yaegashi, S., Kameda, A., Hagiya, M.: Chain Reaction Systems Based on Loop Dissociation of DNA. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp. 347–358. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

    Article  Google Scholar 

  24. Zhang, B.-T., Jang, H.-Y.: A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 458–467. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Zhang, D.Y., Winfree, E.: Dynamic allosteric control of noncovalent dna catalysis reactions. Journal of the American Chemical Society 130(42), 13921–13926 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sainz de Murieta, I., Rodríguez-Patón, A. (2012). Probabilistic Reasoning with a Bayesian DNA Device Based on Strand Displacement. In: Stefanovic, D., Turberfield, A. (eds) DNA Computing and Molecular Programming. DNA 2012. Lecture Notes in Computer Science, vol 7433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32208-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32208-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32207-5

  • Online ISBN: 978-3-642-32208-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics