Space and Energy Efficient Computation with DNA Strand Displacement Systems

  • Chris Thachuk
  • Anne Condon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7433)


Chemical reaction networks (CRN’s) are important models of molecular programming that can be realized by logically reversible, and thus energy efficient, DNA strand displacement systems (DSD’s). Qian et al. [12] showed that energy efficient DSD’s are Turing-universal; however their simulation of a computation requires space (or volume) proportional to the number of steps of the computation. Here we show that polynomially space bounded computations can be simulated in both a space and energy efficient manner using logically reversible CRN’s and DSD’s. A consequence of our proofs is that determining whether a particular molecular species can be produced from an initial pool of molecules of a CRN or DSD is PSPACE-hard, and thus also verifying the correctness of CRN’s and DSD’s is PSPACE-hard.


Model Check Variable Assignment Boolean Formula Polynomial Space Reachability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, C.H.: Logical reversibility of computation. IBM journal of Research and Development 17(6), 525–532 (1973)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM Journal on Computing 18(4), 766–776 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cardoza, E., Lipton, R., Meyer, A.R.: Exponential space complete problems for Petri nets and commutative semigroups. In: Proceedings of the Eigth Annual ACM Symposium on Theory of Computing, pp. 50–54. ACM (1976)Google Scholar
  4. 4.
    Condon, A., Hu, A., Maňuch, J., Thachuk, C.: Less Haste, Less Waste: On Recycling and Its Limits in Strand Displacement Systems. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 84–99. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1. Wiley (1971)Google Scholar
  6. 6.
    Lakin, M.R., Phillips, A.: Modelling, Simulating and Verifying Turing-Powerful Strand Displacement Systems. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 130–144. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and analysis of DNA strand displacement devices using probabilistic model checking. Journal of the Royal Society Interface (2012)Google Scholar
  8. 8.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3), 183–191 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. Journal of Computer Systems Science 60(2), 354–367 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cardelli, L.: Two-domain DNA strand displacement. In: Proc. of Developments in Computational Models (DCM 2010). Electronic Proceedings in Theoretical Computer Science, vol. 26, pp. 47–61 (2010)Google Scholar
  11. 11.
    Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  12. 12.
    Qian, L., Soloveichik, D., Winfree, E.: Efficient Turing-Universal Computation with DNA Polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)CrossRefGoogle Scholar
  14. 14.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  15. 15.
    Shin, J.-S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)CrossRefGoogle Scholar
  16. 16.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Winfree, E.: Personal communication (2012)Google Scholar
  18. 18.
    Zavattaro, G., Cardelli, L.: Termination Problems in Chemical Kinetics. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 477–491. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chris Thachuk
    • 1
  • Anne Condon
    • 1
  1. 1.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada

Personalised recommendations