DNA Self-Assembly and Computation Studied with a Coarse-Grained Dynamic Bonded Model

  • Carsten Svaneborg
  • Harold Fellermann
  • Steen Rasmussen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7433)


We study DNA self-assembly and DNA computation using a coarse-grained DNA model within the directional dynamic bonding framework [C. Svaneborg, Comp. Phys. Comm. 183, 1793 (2012)]. In our model, a single nucleotide or domain is represented by a single interaction site. Complementary sites can reversibly hybridize and dehybridize during a simulation. This bond dynamics induces a dynamics of the angular and dihedral bonds, that model the collective effects of chemical structure on the hybridization dynamics. We use the DNA model to perform simulations of the self-assembly kinetics of DNA tetrahedra, an icosahedron, as well as strand displacement operations used in DNA computation.


Langevin Dynamic Strand Displacement Backbone Bond Hybridization Bond Dynamic Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problem. Science 266, 1021 (1994)CrossRefGoogle Scholar
  2. 2.
    Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M.M., Sander, B., Stark, H., Oliveira, C.L.P., Pedersen, J.S., Birkedal, V., Besenbacher, F., Gothelf, K.V., Kjems, J.: Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73 (2008)CrossRefGoogle Scholar
  3. 3.
    Bhatia, D., Mehtab, S., Krishnan, R., Indi, S.S., Basu, A., Krishnan, Y.: Icosahedral DNA nanocapsules by modular assembly. Angew. Chem. 121, 4198 (2009)CrossRefGoogle Scholar
  4. 4.
    Brooks, B.R., Brooks III, C.L., Mackerell Jr., A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: The Biomolecular Simulation Program. J. Comput. Phys. 30, 1545 (2009)Google Scholar
  5. 5.
    Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10, 407 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Case, D.A., Darden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., et al.: AMBER 11. University of California, San Francisco (2010)Google Scholar
  7. 7.
    Cheatham III, T.E., Young, M.A.: Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise. Biopolymers 56, 232 (2000)CrossRefGoogle Scholar
  8. 8.
    Chen, J., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631 (1991)CrossRefGoogle Scholar
  9. 9.
    Erben, C.M., Goodman, R.P., Turberfield, A.J.: A self-assembled DNA bipyramid. J. Am. Chem. Soc. 129, 6992 (2007)CrossRefGoogle Scholar
  10. 10.
    Goodman, R.P., Schaap, I.A.T., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F., Turberfield, A.J.: Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661 (2005)CrossRefGoogle Scholar
  11. 11.
    Hsu, C.W., Sciortino, F., Starr, F.W.: Theoretical description of a DNA-linked nanoparticle self-assembly. Phys. Rev. Lett. 105, 55502 (2010)CrossRefGoogle Scholar
  12. 12.
    Jost, D., Everaers, R.: A unified description of poly- and oligonucleotide DNA melting: nearest-neighbor, Poland-Sheraga and lattice models. Phys. Rev. E 75, 041918 (2007)CrossRefGoogle Scholar
  13. 13.
    Jost, D., Everaers, R.: A unified Poland-Scheraga model of oligo-and polynucleotide DNA melting: Salt effects and predictive power. Biophys. J. 96, 1056 (2009)CrossRefGoogle Scholar
  14. 14.
    Jost, D., Everaers, R.: Prediction of RNA multi-loop and pseudoknot conformations from a lattice-based, coarse-grain tertiary structure model. J. Chem. Phys. 132, 095101 (2010)CrossRefGoogle Scholar
  15. 15.
    Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit design. J R Soc. Interface 9, 470 (2012)CrossRefGoogle Scholar
  16. 16.
    Langowski, J.: Polymer chain models of DNA and chromatin. Eur. Phys. J. E Soft Matter 19, 241 (2006)CrossRefGoogle Scholar
  17. 17.
    MacKerell Jr., A.D., Banavali, N., Foloppe, N.: Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56, 257 (2000)CrossRefGoogle Scholar
  18. 18.
    Martinez-Veracoechea, F.J., Mladek, B.M., Tkachenko, A.V., Frenkel, D.: Design rule for colloidcal crystals of DNA-functionalized particles. Phys. Rev. Lett. 107, 045902 (2011)CrossRefGoogle Scholar
  19. 19.
    Ouldridge, T.E., Louis, A.A., Doye, J.P.K.: DNA nanotweezers studied with a coarse-grained model of DNA. Phys. Rev. Lett. 104, 178101 (2010)CrossRefGoogle Scholar
  20. 20.
    Ouldridge, T.E., Louis, A.A., Doye, J.P.K.: Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J. Chem. Phys. 134, 085101 (2011)CrossRefGoogle Scholar
  21. 21.
    de Pablo, J.J.: Polymer simulations: From DNA to composites. Annu. Rev. Phys. Chem. 62 (2011)Google Scholar
  22. 22.
    Peyrard, M., Cuesta-Lopez, S., James, G.: Modelling DNA at the mesoscale: a challenge for nonlinear science? Nonlinearity 21, T91 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1 (1995), zbMATHCrossRefGoogle Scholar
  24. 24.
    Poland, D., Scheraga, H.A.: Phase transitions in one dimension and the helix-coil transition in polyamino acids. J. Chem. Phys. 45, 1456 (1966)CrossRefGoogle Scholar
  25. 25.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196 (2011)CrossRefGoogle Scholar
  26. 26.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297 (2006)CrossRefGoogle Scholar
  27. 27.
    Sambriski, E.J., Ortiz, V., de Pablo, J.J.: Sequence effects in the melting and renaturation of short DNA oligonucleotides: structure and mechanistic pathways. J. Phys. Condens. Matter 21, 034105 (2009)CrossRefGoogle Scholar
  28. 28.
    Sambriski, E.J., Schwartz, D.C., de Pablo, J.J.: A mesoscale model of DNA and its renaturation. Biophys. J. 96, 1675 (2009)CrossRefGoogle Scholar
  29. 29.
    SantaLucia, J.J., Hicks, D.: The thermodynamics of DNA structural motiefs. Annu. Rev. Biophys. Biomol. Struct. 33, 415 (2004)CrossRefGoogle Scholar
  30. 30.
    Savelyev, A., Papoian, G.A.: Chemically accurate coarse graining of double-stranded DNA. PNAS 107, 20340 (2010)CrossRefGoogle Scholar
  31. 31.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585 (2006)CrossRefGoogle Scholar
  32. 32.
    Seeman, N.C.: Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237 (1982)CrossRefGoogle Scholar
  33. 33.
    Svaneborg, C.: LAMMPS framework for dynamic bonding an application modeling DNA. Comp. Phys. Comm. 183, 1793 (2012)CrossRefGoogle Scholar
  34. 34.
    Tinlan, B., Pluen, A., Sturm, J., Weill, G.: Persistence length of single-stranded DNA. Macromolecules 30, 5763 (1997)CrossRefGoogle Scholar
  35. 35.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 529 (1998)CrossRefGoogle Scholar
  36. 36.
    Xhang, Y., Seeman, N.C.: Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116, 1661 (1994)CrossRefGoogle Scholar
  37. 37.
    Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carsten Svaneborg
    • 1
  • Harold Fellermann
    • 1
    • 2
  • Steen Rasmussen
    • 1
    • 3
  1. 1.Center for Fundamental Living Technology, Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
  2. 2.Complex Systems Lab., Barcelona Biomedical Research ParkUniversitat Pompeu FabraBarcelonaSpain
  3. 3.Santa Fe InstituteSanta FeUSA

Personalised recommendations