Data Forensics Constructions from Cryptographic Hashing and Coding
Abstract
Data forensics needs techniques that gather digital evidence of data corruption. While techniques like error correcting codes, disjunct matrices and cryptographic hashing are frequently studied and used in practical applications, very few research efforts have been done to rigorously evaluate and combine benefits of these techniques for data forensics purposes. In this paper we formulate unifying algorithm, data and security models that allow to evaluate and prove the security guarantees provided by direct forensic encoding constructions from these techniques and suitable combinations of them.We rigorously clarify the different security guarantees provided by using these techniques (alone or in some standard or novel combinations) for both data at rest and data in transit. Our most novel construction provides a forensic encoding scheme that allows to detect if any errors were introduced by corrupted data senders, does not allow data intruders to detect whether the data was encoded or not, and requires no data expansion in a large-min-entropy data model, as typical in multimedia data.
Keywords
Hash Function Data Item Digital Evidence Security Guarantee Security NotionPreview
Unable to display preview. Download preview PDF.
References
- 1.Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in message authentication and authenticated encryption. Cryptology ePrint Archive: Report 2004/309Google Scholar
- 2.Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd edn. Morgan Kaufmann Publishers (2008)Google Scholar
- 3.Damgård, I.B.: Collision Free Hash Functions and Public Key Signature Schemes. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216. Springer, Heidelberg (1988)Google Scholar
- 4.De Bonis, A., Di Crescenzo, G.: Combinatorial Group Testing for Corruption Localizing Hashing. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 579–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 5.Di Crescenzo, G., Ge, R., Arce, G.: Design and Analysis of DBMAC: an Error-Localizing Message Authentication Code. In: Proceedings of IEEE GLOBECOM 2004 (2004)Google Scholar
- 6.Di Crescenzo, G., Jiang, S., Safavi-Naini, R.: Corruption-Localizing Hashing. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 489–504. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 7.Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional Oblivious Transfer and Timed-Release Encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 74–89. Springer, Heidelberg (1999)Google Scholar
- 8.Di Crescenzo, G., Vakil, F.: Cryptographic hashing for virus localization. In: Proceedings of the 2006 ACM CCS Workshop on Rapid Malcode, WORM 2006, pp. 41–48 (2006)Google Scholar
- 9.Dorfman, R.: The detection of defective members of large populations. Ann. Math. Statist. 14, 436–440 (1943)CrossRefGoogle Scholar
- 10.Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications. World Scientific (2000)Google Scholar
- 11.Dyachkov, A.G., Rykov, V.V.: A survey of superimposed code theory. Problems Control & Inform. Theory 12(4), 1–13 (1983)MathSciNetGoogle Scholar
- 12.Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Problemy Peredachi Informatsii (Problems of Information Transmission) 18(3), 7–13Google Scholar
- 13.Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of r others. Israel J. of Math. 51, 75–89 (1985)CrossRefGoogle Scholar
- 14.Fang, J., Jiang, Z., Yiu, S., Hui, C.: Hard Disk Integrity Check by Hashing with Combinatorial Group Testing. In: Proc. of CSA 2009 (2009)Google Scholar
- 15.Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, New Jersey (2008)Google Scholar
- 16.Goodrich, M., Atallah, M., Tamassia, R.: Indexing Information for Data Forensics. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 206–221. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 17.Hopper, N.J., Langford, J., von Ahn, L.: Provably Secure Steganography. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 18.MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, New York (1977)MATHGoogle Scholar
- 19.Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)Google Scholar
- 20.NIST. Secure Hash Signature Standard (SHS) (FIPS PUB 180-2). United States of America, Federal Information Processing Standard (FIPS) 180-2, August 1 (2002)Google Scholar
- 21.NIST, Cryptographic Hash Algorithm Competition, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
- 22.Kautz, W.H., Singleton, R.R.: Nonrandom binary superimposed codes. IEEE Trans. on Inform. Theory 10, 363–377 (1964)MATHCrossRefGoogle Scholar
- 23.Porat, E., Rothschild, A.: Explicit Non-adaptive Combinatorial Group Testing Schemes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 748–759. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 24.Russell, A.: Necessary and Sufficient Conditions for Collision-Free Hashing. Journal of Cryptology 8(2) (1995)Google Scholar