Laser-Induced Breakdown Spectroscopy Measurements for Dielectric Materials and Metals

  • S. Ikezawa
  • M. Wakamatsu
  • T. Ueda
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 1)


This chapter describes an optical sensing system for elemental analysis using laser-induced electro-avalanche fluorescence on wide bandgap materials, and laser-induced plasma on metal objects. This method of measurement and analysis is called “laser-induced breakdown spectroscopy” (LIBS). In LIBS, the vaporizing and exciting plasma is produced by high-powered focused laser pulses. Pulses from a laser are focused on the sample using a lens, and plasma emission light is collected and collimated using a second lens. The light is transported to a wavelength selective device on the spectrograph, and recorded time-resolved, or gate setting, devices to improve the signal-to-noise and signal-to-background ratio. This provides discrimination against interference from an emission continuum, called “bremsstrahlung.” Plasma light is initially dominated by a white light continuum, that has little intensity variation as a function of wavelength because of bremsstrahlung and radiation from the plasma as free electrons and ions recombine in the plasma cooling process. If the emission is recorded over the entire time, this light continuum seriously interferes with the detection of weaker emissions from atomic species. For this reason, temporal resolving measurement is carried out using LIBS. This chapter introduces a LIBS system applied to wide-bandgap materials like sodium, and metal objects containing small metal particles.


Streak Camera Breakdown Spectroscopy Multiphoton Process Wide Bandgap Material Lunar Soil Simulant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brech, F., Cross, L.: Optical microemission stimulated by a ruby laser. Appl. Spectrosc. 16(2) (1962)Google Scholar
  2. 2.
    Gondal, M.A., Hussain, T., Yamani, Z.H., Baig, M.A.: On-line monitoring of remediation process of chromium-polluted soil using LIBS. J. Hazard. Mater. 163, 1265–1271 (2009)CrossRefGoogle Scholar
  3. 3.
    Hussain, T., Gondal, M.A.: Monitoring and assessment of toxic metals in Gulf war oil spill contaminated soil using laser-induced breakdown spectroscopy. Environ. Monit. Assess. 136, 391–399 (2008)CrossRefGoogle Scholar
  4. 4.
    Kim, T., Specht, Z.G., Vary, P.S., Lin, C.T.: Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy. J. Phys. Chem. B 108, 5477–5482 (2004)CrossRefGoogle Scholar
  5. 5.
    Hotokezaka, H., Aoyagi, N., Kawahara, Y., Yamaguchi, N.U., Nagasaki, S., Sasaki, K., Tanaka, S.: Selective and in-situ determination of carbonate and oxide particles in aqueous solution using laser-induced breakdown spectroscopy (LIBS) for wearable information equipment. Microsystem Technologies 11(8-10), 974–979 (2005)CrossRefGoogle Scholar
  6. 6.
    Ajiro, T., Fujimori, H., Matsui, T., Izumi, S.: Particle size dependence of correlation between plasma emission delay time and plasma emission intensity of laser breakdown induced by particles. Jpn. J. Appl. Phys. 31(1, 9A), 2760–2761 (1992)CrossRefGoogle Scholar
  7. 7.
    Fujimori, H., Matsui, T., Ajiro, T., Yokose, K., Hsueh, Y.M., Izumi, S.: Detection of fine particles in liquids by laser breakdown method. Jpn. J. Appl. Phys. 31(1, 5A), 1514–1518 (1992)CrossRefGoogle Scholar
  8. 8.
    Hotokezaka, H., Tanaka, S., Suzuki, A., Nagasaki, S.: Speciation analysis on europium(III) using laser-induced breakdown spectroscopy. Radiochim. Acta 88, 645–648 (2000)CrossRefGoogle Scholar
  9. 9.
    Nakamura, S., Ito, Y., Sone, K., Hiraga, H., Kaneko, K.: Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses. Anal. Chem. 68, 2981–2986 (1996)CrossRefGoogle Scholar
  10. 10.
    Rodriguez-Celis, E.M., Gornushkin, I.B., Heitmann, U.M., Almirall, J.R., Smith, B.W., Winefordner, J.D., Omenetto, N.: Laser induced breakdown spectroscopy as a tool for discrimination of glass for forensic applications. Anal. Bioanal. Chem. 391, 1961–1968 (2008)CrossRefGoogle Scholar
  11. 11.
    Baudelet, M., Guyon, L., Yu, J., Wolf, J.P., Amodeo, T., Frejafon, E., Laloi, P.: Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime. J. Appl. Phys. 99, 084701 (2006)CrossRefGoogle Scholar
  12. 12.
    Sturm, V., Vrenegor, J., Noll, R., Hemmerlin, M.: Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo. J. Anal. At. Spectrom. 19, 451–456 (2004)CrossRefGoogle Scholar
  13. 13.
    Noll, R., Mönch, I., Klein, O., Lamott, A.: Concept and operating performance of inspection machines for industrial use based on laser-induced breakdown spectroscopy. Spectrochim. Acta B 60(7-8), 1070–1075 (2005)CrossRefGoogle Scholar
  14. 14.
    Osticioli, I., Wolf, M., Anglos, D.: An optimization of parameters for application of a laser-induced breakdown spectroscopy microprobe for the analysis of works of art. Appl. Spectrosc. 62, 1242–1249 (2008)CrossRefGoogle Scholar
  15. 15.
    Ciupiński, Ł., Fortuna-Zaleśna, E., Garbacz, H., Koss, A., Kurzydłowski, K.J., Marczak, J., Mróz, J., Onyszczuk, T., Rycyk, A., Sarzyński, A., Skrzeczanowski, W., Strzelec, M., Zatorska, A., Żukowska, G.Z.: Comparative laser spectroscopy diagnostics for ancient metallic artefacts exposed to environmental pollution. Sensors 10(5), 4926–4949 (2010)CrossRefGoogle Scholar
  16. 16.
    Radziemski, L., Cremers, D., Benelli, K., Khoo, C., Harris, R.D.: Use of the vacuum ultraviolet spectral region for LIBS-based Martian geology and exploration. Spectrochim. Acta B 60, 237–248 (2005)CrossRefGoogle Scholar
  17. 17.
    Sallé, B., Cremers, D.A., Maurice, S., Wiens, R.C.: Laser-induced breakdown spectroscopy for space exploration apprications: Influence of ambient pressure on the calibration curves prepared from soil and clay samples. Spectrochim. Acta B 60, 479–490 (2005)CrossRefGoogle Scholar
  18. 18.
    Sallé, B., Cremers, D.A., Maurice, S., Wiens, R.C.: Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples in Martian missions. Spectrochim. Acta B 60, 805–815 (2005)CrossRefGoogle Scholar
  19. 19.
    Sallé, B., Lacour, J.-L., Vors, E., Fichet, P., Maurice, S., Cremers, D.A., Wiens, R.C.: Laser-induced breakdown spectroscopy for Mars surface analysis: Capabilities at stand-off distance and detection of chlorine and sulfur elements. Spectrochim. Acta B 59, 1413–1422 (2004)CrossRefGoogle Scholar
  20. 20.
    Arp, Z.A., Cremers, D.A., Harris, R.D., Oschwald, D.M., Parker, G.R., Wayne, D.M.: Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission. Spectrochim. Acta B 59, 987–999 (2004)CrossRefGoogle Scholar
  21. 21.
    Arp, Z.A., Cremers, D.A., Wiens, R.C., Wayne, D.M., Sallé, B., Maurice, S.: Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: Application to Mars polar exploration. Appl. Spectrosc. 58, 897–909 (2004)CrossRefGoogle Scholar
  22. 22.
    Brennetot, R., Lacour, J.L., Vors, E., Rivoallan, A., Vailhen, D., Maurice, S.: Mars analysis by laser-induced breakdown spectroscopy (MALIS): Influence of Mars atmosphere on plasma emission and study of factors influencing plasma emission with the use of Doehlert designs. Appl. Spectrosc. 57, 744–752 (2003)CrossRefGoogle Scholar
  23. 23.
    Knight, A.K., Scherbarth, N.L., Cremers, D.A., Ferris, M.J.: Characterization of laser-induced breakdown spectroscopy (LIBS) for apprication to space exploration. Appl. Spectrosc. 54, 331–340 (2000)CrossRefGoogle Scholar
  24. 24.
    Sharma, S.K., Misra, A.K., Lucey, P.G., Clegg, S.M.: Combied remote LIBS and Raman spectroscopy of sulfur-containing minerals, and minerals coated with hematite and covered with basaltic dust at 8.6 m. Spectrochim. Acta A 68, 1036–1045 (2007)CrossRefGoogle Scholar
  25. 25.
    Wiens, R.C., Sharma, S.K., Thompson, J., Misra, A., Lucey, P.G.: Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Spectrochim. Acta A 61, 2324–2334 (2005)CrossRefGoogle Scholar
  26. 26.
    Fabre, C., Boiron, M.-C., Dubessy, J., Cathelineau, M., Banks, D.A.: Palaeofluid chemistry of a single fluid event: a bulk and in-situ multi-technique analysis (LIBS, Raman Spectroscopy) of an Alpine fluid (Mont-Blanc). Chem. Geol. 182, 249–264 (2002)CrossRefGoogle Scholar
  27. 27.
    Marquardt, B.J., Stratis, D.N., Cremers, D.A., Angel, S.M.: Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber. Appl. Spectrosc. 52, 1148–1153 (1998)CrossRefGoogle Scholar
  28. 28.
    Castillejo, M., Martín, M., Silva, D., Stratoudaki, T., Anglos, D., Burgio, L., Clark, R.J.H.: Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy. J. Mol. Struct. 550-551, 191–198 (2000)CrossRefGoogle Scholar
  29. 29.
    Effenberger Jr., A.J., Scott, J.R.: Effect of atmospheric conditions on LIBS spectra. Sensors 10, 4907–4925 (2010)CrossRefGoogle Scholar
  30. 30.
    Shu, R., Qi, H.X., Lu, G., Ma, D.M., He, Z.P., Xue, Y.Q.: Laser-induced breakdown spectroscopy based detection of lunar soil simulants for moon exploration. Chin. Opt. Lett. 5, 58–59 (2007)Google Scholar
  31. 31.
    Wiens, R.C., Maurice, S.: Chemcam’s cost a drop in the Mars bucket. Science 322, 1464–1464 (2008)CrossRefGoogle Scholar
  32. 32.
    Van Stryland, E.W., Soileau, M.J., Smirl, A.L., Williams, W.E.: Pulse-width and focal-volume dependence of laser-induced breakdown. Phys. Rev. B 23, 2144 (1981)CrossRefGoogle Scholar
  33. 33.
    Bandyopadhyay, P.K., Merkle, L.D.: Laser‐induced damage in quartz: A study of the influence of impurities and defects. J. Appl. Phys. 63 (1988)Google Scholar
  34. 34.
    Bonch-Bruevich, A.M., Khodovoi, V.A.: Multiphoton Process. Sov. Phys. Usp. No. 85, 3–64 (1965)Google Scholar
  35. 35.
    Archontaki, H.A., Crouch, S.R.: Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy. Appl. Spectrosc. 42(5), 741–746 (1988)CrossRefGoogle Scholar
  36. 36.
    Janzen, C., et al.: Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 60, 993–1001 (2005)CrossRefGoogle Scholar
  37. 37.
    Kumar, A., Yueh, F.Y., Miller, T., Singh, J.P.: Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a Meinhard nebulizer. Appl. Optics 42(30), 6040–6046 (2003)CrossRefGoogle Scholar
  38. 38.
    Andreev, A., Ueda, T.: Simulation of laser plasma emission characteristics of small solid particles in different gas atmospheres at various pressures. Trans. IEE of Japan 121-E(11), 593–598 (2001)CrossRefGoogle Scholar
  39. 39.
    Hayashi, H., Ueda, T.: Measurement of particle size with laser induced breakdown. In: Proc. of SICE 1999, pp. 645–646 (1999)Google Scholar
  40. 40.
    Ueda, T., Okamoto, Y.: “In-situ status measurement technology. In: The 2nd Symp. on Advanced Photon Processing and Measurement Technol., pp. 38–44 (1998)Google Scholar
  41. 41.
    Wakamatsu, M., Ikezawa, S., Ueda, T.: Particle element and size simultaneous measurement using LIBS. IEEJ Trans. Sensors Micromach. 127(9), 397–402 (2007)CrossRefGoogle Scholar
  42. 42.
    Ikezawa, S., Wakamatsu, M., Pawlat, J., Ueda, T.: Sensing System for Multiple Measurements of Trace Elements Using Laser-induced Breakdown Spectroscopy. IEEJ Trans. Sensors Micromach. 129(4), 115–119 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Graduate School of Information Production and SystemsWaseda UniversityKitakyushuJapan

Personalised recommendations