Experimental Research Platform for Structural Health Monitoring

  • Benjamin Babjak
  • Sandor Szilvasi
  • Alex Pedchenko
  • Mark Hofacker
  • Eric J. Barth
  • Peter Volgyesi
  • Akos Ledeczi
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 1)


Non-destructive structural testing aims to characterize material and detect failures without damaging the structure in any way. Detection historically meant some form of a visual assessment combined with auditory tests carried out by trained personnel. Inspectors well prepared to identify various types of deterioration would conduct periodic evaluations comparing the current state with previous reports. The problem with this was not only that most likely damage locations had to be known a priori and had to be readily accessible but also that the whole approach had a strong subjective aspect to it. This latter issue was somewhat alleviated with the introduction of more advanced inspection methods and instruments, such as X-ray and ultrasonic techniques, but the main problem of inspections being cumbersome, slow, and superficial still remained untouched.


Acoustic Emission Wireless Sensor Network Energy Harvester Structural Health Monitoring Proof Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlborn, T.M., Shuchman, R., Sutter, L.L., Brooks, C.N., Harris, D.K., Burns, J.W., Endsley, K.A., Evans, D.C., Vaghefi, K., Oats, R.C.: The State-of-the-Practice of Modern Structural Health Monitoring for Bridges: A Comprehensive Review. Technical Report 734, Michigan Tech (2010)Google Scholar
  2. 2.
    Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology 17(12), R175–R195 (2006)Google Scholar
  3. 3.
    Chang, P.C., Chi Liu, S.: Recent Research in Nondestructive Evaluation of Civil Infrastructures. Journal of Materials in Civil Engineering 15(3), 298 (2003)CrossRefGoogle Scholar
  4. 4.
    Chen, R., Fernando, G.F., Butler, T., Badcock, R.A.: A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler. Measurement Science and Technology 15(8), 1490–1495 (2004)CrossRefGoogle Scholar
  5. 5.
    James, M.: Conrad. A survey of energy harvesting sources for embedded systems. In: IEEE SoutheastCon 2008, pp. 442–447. IEEE (April 2008)Google Scholar
  6. 6.
    Dondi, D., Pompeo, A.D., Tenti, C., Simuni, T.: Shimmer: a Wireless Harvesting Embedded System for Active Ultrasonic Structural Health Monitoring. Energy, 2325–2328 (2010)Google Scholar
  7. 7.
    Galchev, T., McCullagh, J., Peterson, R.L., Najafi, K.: Harvesting traffic-induced bridge vibrations. In: Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 1661–1664 (2011)Google Scholar
  8. 8.
    Gorman, M.R.: Plate wave acoustic emission. The Journal of the Acoustical Society of America 90(1), 358 (1991)CrossRefGoogle Scholar
  9. 9.
    Harms, T., Sedigh, S., Bastianini, F.: Structural Health Monitoring of Bridges Using Wireless Sensor Networks. IEEE Instrumentation & Measurement Magazine 13(6), 14–18 (2010)CrossRefGoogle Scholar
  10. 10.
    Healy, M., Newe, T., Lewis, E.: Wireless Sensor Node hardware: A review. In: 2008 IEEE Sensors, pp. 621–624. IEEE (October 2008)Google Scholar
  11. 11.
    Ledeczi, A., Hay, T., Volgyesi, P., Hay, D.R., Nadas, A., Jayaraman, S.: Wireless Acoustic Emission Sensor Network for Structural Monitoring. IEEE Sensors Journal 9(11), 1370–1377 (2009)CrossRefGoogle Scholar
  12. 12.
    Lynch, J.P.: A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and Vibration Digest 38(2), 91–128 (2006)CrossRefGoogle Scholar
  13. 13.
    Lynch, J.P., Law, K.H., Kiremidjian, A.S., Carryer, E., Farrar, C.R., Sohn, H., Allen, D.W., Nadler, B., Wait, J.R.: Design and performance validation of a wireless sensing unit for structural monitoring applications. Structural Engineering and Mechanics 17(3-4), 393–408 (2004)Google Scholar
  14. 14.
    Mascareñas, D., Flynn, E., Todd, M., San, C.: Wireless Sensor Technologies for Monitoring Civil Structures. Analysis, 16–20 (April 2008)Google Scholar
  15. 15.
    Moghe, R., Lambert, F., Divan, D.: A scoping study of electric and magnetic field energy harvesting for wireless sensor networks in power system applications. In: 2009 IEEE Energy Conversion Congress and Exposition, pp. 3550–3557. IEEE (2009)Google Scholar
  16. 16.
    Los Alamos National. A Review of Structural Health Monitoring Literature: 1996 - 2001. Structural Health Monitoring, LA-13976-M(LA-13976-MS):1996–2001 (2004)Google Scholar
  17. 17.
    Pedchenko, A.V., Hoke, J.W., Barth, E.J.: A Control Approach for Broadening the Operating Frequency Range of a Bridge Vibration Energy Harvester. In: 2011 Dynamic Systems and Control Conference (2011)Google Scholar
  18. 18.
    Qi, G., Barhorst, A., Hashemi, J., Kamala, G.: Discrete wavelet decomposition of acoustic emission signals from carbon-fiber-reinforced composites. Composites Science and Technology 57(4), 389–403 (1997)CrossRefGoogle Scholar
  19. 19.
    Rippert, L., Wevers, M., Van Huffel, S.: Optical and acoustic damage detection in laminated CFRP composite materials. Composites Science and Technology 60(14), 2713–2724 (2000)CrossRefGoogle Scholar
  20. 20.
    Russell-Minda, E., Jutai, J., Speechley, M., Bradley, K., Chudyk, A., Petrella, R.: Sensors and Technologies for Structural Health Monitoring: A Review. Journal of Diabetes Science and Technology 3(6), 1–14 (2011)Google Scholar
  21. 21.
    Sakamoto, W.K., Marin-Franch, P., Das-Gupta, D.K.: Characterization and application of PZT/PU and graphite doped PZT/PU composite. Sensors and Actuators A: Physical 100(2-3), 165–174 (2002)CrossRefGoogle Scholar
  22. 22.
    Scruby, C.B.: An introduction to acoustic emission. Journal of Physics E: Scientific Instruments 20(8), 946–953 (1987)CrossRefGoogle Scholar
  23. 23.
    Shahabadi, A.: Bridge Vibration Studies: Interim Report. Transportation Research, pp. 108–130 (1977)Google Scholar
  24. 24.
    Williams, C.B., Pavic, A., Crouch, R.S., Woods, R.C.: Feasibility study of vibration-electric generator for bridge vibration sensors. In: IMAC-Proceedings 16th International Modal Analysis Conference, pp. 1111–1117 (1998)Google Scholar
  25. 25.
    Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A., Govindan, R., Estrin, D.: A wireless sensor network For structural monitoring. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems - SenSys 2004, p. 13. ACM Press, New York (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Benjamin Babjak
    • 1
  • Sandor Szilvasi
    • 1
  • Alex Pedchenko
    • 2
  • Mark Hofacker
    • 2
  • Eric J. Barth
    • 2
  • Peter Volgyesi
    • 1
  • Akos Ledeczi
    • 1
  1. 1.Institute for Software Integrated SystemsNashvilleUSA
  2. 2.Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations