Optical Fiber Sensors Based on Lossy Mode Resonances

  • Miguel Hernáez
  • Carlos R. Zamarreño
  • Ignacio Del Villar
  • Francisco J. Arregui
  • Ignacio R. Matias
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 1)

Abstract

In the last decades, optical fiber sensors have played an important role in niche applications because of their advantages over electronic sensors. First of all, optical fiber makes possible the multiplexing of a large amount of sensor data over long distances. This feature allows placing the sensing devices at kilometers from the electronic systems used to process the information. In addition, optical fiber is made of dielectric materials. Consequently, optical fiber sensors are not affected by electromagnetic fields, what makes them suitable to be used in situations under high electromagnetic fields or radiation doses [1]. Furthermore, this technology can be also used in medical applications due to its biocompatibility and has acquired a great importance in the development of biomedical instrumentation. Other interesting advantages of optical fiber sensors are their small size or their wide temperature working range [2-5].

Keywords

Surface Plasmon Resonance Optical Fiber Optical Fiber Sensor Surface Plasmon Resonance Sensor Surface Plasmon Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gusarov, A., Fernandez Fernandez, A., Vasiliev, S., Medvedkov, O., Blondel, M., Berghmans, F.: Effect of gamma-neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber. In: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 187, pp. 79–86 (2002)Google Scholar
  2. 2.
    Wolfbeis, O.S.: Fibre-optic sensors in biomedical sciences. Pure and Applied Chemistry, Pure and Applied Chemistry 59, 663–672 (1987)Google Scholar
  3. 3.
    Arregui, F.J.: Sensors Based on Nanostructured Materials. In: Sensors Based on Nanostructured Materials. Springer, New York (2009)CrossRefGoogle Scholar
  4. 4.
    Dakin, J., Culshaw, B.: Optical Fiber Sensors, vol. I, II, III and IV. Artech House Publishers, Massachusetts (1988, 1989, 1996, 1997)Google Scholar
  5. 5.
    Matias, I.R., Arregui, F.J., Claus, R.O.: Optical Fiber Sensors. In: Optical Fiber Sensors. American Scientific Publishers, New York (2006)Google Scholar
  6. 6.
    Arregui, F.J., Matías, I.R., Cooper, K.L., Claus, R.O.: Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber bragg grating. IEEE Sensors Journal 2, 482–487 (2002)CrossRefGoogle Scholar
  7. 7.
    Corres, J.M., Del Villar, I., Matias, I.R., Arregui, F.J.: Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors. IEEE Transactions on Nanotechnology 7, 394–400 (2008)CrossRefGoogle Scholar
  8. 8.
    Larrión, B., Hernáez, M., Arregui, F.J., Goicoechea, J., Bravo, J., Matías, I.R.: Photonic Crystal Fiber Temperature Sensor Based on Quantum Dot Nanocoatings. Journal of Sensors (2009)Google Scholar
  9. 9.
    Corres, J.M., Arregui, F.J., Matías, I.R.: Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings. Sensors and Actuators, B: Chemical 122, 442–449 (2007)CrossRefGoogle Scholar
  10. 10.
    Arregui, F.J., Liu, Y., Matias, I.R., Claus, R.O.: Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method. Sensors and Actuators, B: Chemical 59, 54–59 (1999)CrossRefGoogle Scholar
  11. 11.
    Homola, J.: Surface plasmon resonance biosensing. In: CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009)Google Scholar
  12. 12.
    Homola, J.: Surface plasmon resonance biosensors: Advances and applications. In: Proceedings of SPIE - the International Society for Optical Engineering (2009)Google Scholar
  13. 13.
    Homola, J.: Surface Plasmon Resonance Based Sensors. Springer, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Gupta, B.D., Verma, R.K.: Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications. Journal of Sensors (2009)Google Scholar
  15. 15.
    Gupta, B.D., Sharma, A.K.: Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: A theoretical study. Sensors and Actuators, B: Chemical 107, 40–46 (2005)CrossRefGoogle Scholar
  16. 16.
    NTSC of the USA Government, "The national nanotechnology initiative. strategic plan," (2004)Google Scholar
  17. 17.
    Fundación OPTI, "Aplicaciones industriales de las nanotecnologías en españa en el horizonte 2020," (2008)Google Scholar
  18. 18.
    Del Villar, I., Zamarreno, C.R., Hernaez, M., Arregui, F.J., Matias, I.R.: Lossy Mode Resonance Generation With Indium-Tin-Oxide-Coated Optical Fibers for Sensing Applications. Journal of Lightwave Technology 28, 111–117 (2010)CrossRefGoogle Scholar
  19. 19.
    Liedberg, B., Nylander, C., Lunström, I.: Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 4, 299–304 (1983)CrossRefGoogle Scholar
  20. 20.
    van Gent, J., Lambeck, P.V., Bakker, R.J., Popma, T.H.J.A., Sudhölter, E.J.R., Reinhoudt, D.N.: Design and realization of a surface plasmon resonance-based chemo-optical sensor. Sensors and Actuators: A.Physical 26, 449–452 (1991)CrossRefGoogle Scholar
  21. 21.
    Stenberg, E., Persson, B., Roos, H., Urbaniczky, C.: Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interface Sci. 143, 513–526 (1991)CrossRefGoogle Scholar
  22. 22.
    Dougherty, G.: Compact optoelectronic instrument with a disposable sensor based on surface plasmon resonance. Measurement Science and Technology 4, 697–699 (1993)CrossRefGoogle Scholar
  23. 23.
    Ekgasit, S., Tangcharoenbumrungsuk, A., Yu, F., Baba, A., Knoll, W.: Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics. Sensors and Actuators, B: Chemical 105, 532–541 (2005)CrossRefGoogle Scholar
  24. 24.
    Chyou, J., Chu, C., Chien, F., Lin, C., Yeh, T., Hsu, R.C., Chen, S.: Precise determination of the dielectric constant and thickness of a nanolayer by use of surface plasmon resonance sensing and multiexperiment linear data analysis. Appl. Opt. 45, 6038–6044 (2006)CrossRefGoogle Scholar
  25. 25.
    Chiang, H.P., Chen, C., Wu, J.J., Li, H.L., Lin, T.Y., Sánchez, E.J., Leung, P.T.: Effects of temperature on the surface plasmon resonance at a metal-semiconductor interface. Thin Solid Films 515, 6953–6961 (2007)CrossRefGoogle Scholar
  26. 26.
    Le Person, J., Colas, F., Compère, C., Lehaitre, M., Anne, M., Boussard-Plédel, C., Bureau, B., Adam, J., Deputier, S., Guilloux-Viry, M.: Surface plasmon resonance in chalcogenide glass-based optical system. Sensors and Actuators, B: Chemical 130, 771–776 (2008)CrossRefGoogle Scholar
  27. 27.
    Feng, W., Shenye, L., Xiaoshi, P., Zhuangqi, C., Yongkun, D.: Reflective-type configuration for monitoring the photobleaching procedure based on surface plasmon resonance. Journal of Optics A: Pure and Applied Optics 10 (2008)Google Scholar
  28. 28.
    Jorgenson, R.C., Yee, S.S.: A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators: B. Chemical 12, 213–220 (1993)CrossRefGoogle Scholar
  29. 29.
    Culshaw, B., Kersey, A.: Fiber-optic sensing: A historical perspective. J. Lightwave Technol. 26, 1064–1078 (2008)CrossRefGoogle Scholar
  30. 30.
    Cusano, A., López-Higuera, J.M., Matias, I.R., Culshaw, B.: Editorial optical fiber sensor technology and applications. IEEE Sensors Journal 8, 1052–1054 (2008)CrossRefGoogle Scholar
  31. 31.
    Lee, B.: Review of the present status of optical fiber sensors. Optical Fiber Technology 9, 57–79 (2003)CrossRefGoogle Scholar
  32. 32.
    Wolfbeis, O.S.: Fiber-optic chemical sensors and biosensors. Anal. Chem. 76, 3269–3284 (2004)CrossRefGoogle Scholar
  33. 33.
    Piliarik, M., Homola, J., Maníková, Z., Čtyroký, J.: Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sensors and Actuators, B: Chemical 90, 236–242 (2003)CrossRefGoogle Scholar
  34. 34.
    Gentleman, D.J., Obando, L.A., Masson, J., Holloway, J.R., Booksh, K.S.: Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems. Anal. Chim. Acta 515, 291–302 (2004)CrossRefGoogle Scholar
  35. 35.
    Mitsushio, M., Higashi, S., Higo, M.: Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols. Sens Actuators A Phys. 111, 252–259 (2004)CrossRefGoogle Scholar
  36. 36.
    Kim, Y., Peng, W., Banerji, S., Booksh, K.S.: Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt. Lett. 30, 2218–2220 (2005)CrossRefGoogle Scholar
  37. 37.
    Sharma, A.K., Jha, R., Gupta, B.D.: Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review. IEEE Sensors Journal 7, 1118–1129 (2007)CrossRefGoogle Scholar
  38. 38.
    Slavík, R., Homola, J., Tyroký, J., Brynda, E.: Novel spectral fiber optic sensor based on surface plasmon resonance. Sensors and Actuators, B: Chemical 74, 106–111 (2001)CrossRefGoogle Scholar
  39. 39.
    Rajan, Chand, S., Gupta, B.D.: Fabrication and characterization of a surface plasmon resonance based fiber-optic sensor for bittering component-Naringin. Sensors and Actuators, B: Chemical 115, 344–348 (2006)CrossRefGoogle Scholar
  40. 40.
    Rhodes, C., Cerruti, M., Efremenko, A., Losego, M., Aspnes, D.E., Maria, J., Franzen, S.: Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. J. Appl. Phys. 103 (2008)Google Scholar
  41. 41.
    Robusto, P.F., Braunstein, R.: Optical measurements of the surface plasmon of indium-tin oxide. Physica Status Solidi (A) Applied Research 119, 155–168 (1990)CrossRefGoogle Scholar
  42. 42.
    Brewer, S.H., Franzen, S.: Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: Correlation of reflectivity, skin depth, and plasmon frequency with conductivity. J. Alloys Compounds 338, 73–79 (2002)CrossRefGoogle Scholar
  43. 43.
    Brewer, S.H., Franzen, S.: Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy. J. Phys. Chem. B 106, 12986–12992 (2002)CrossRefGoogle Scholar
  44. 44.
    Yang, F., Sambles, J.R.: Determination of the optical permittivity and thickness of absorbing films using long range modes. Journal of Modern Optics 44, 1155–1163 (1997)CrossRefGoogle Scholar
  45. 45.
    Marciniak, M., Grzegorzewski, J., Szustakowski, M.: Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer. IEE Proc. Part J Optoelectron 140, 247–252 (1993)CrossRefGoogle Scholar
  46. 46.
    Razansky, D., Einziger, P.D., Adam, D.R.: Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films. Phys. Rev. Lett. 95, 1–4 (2005)CrossRefGoogle Scholar
  47. 47.
    Batchman, T.E., McWright, G.M.: Mode coupling between dielectric and semiconductor planar waveguides. IEEE J. Quant. Electron. 18, 782–788 (1982)CrossRefGoogle Scholar
  48. 48.
    Carson, R.F., Batchman, T.E.: Multimode phenomena in semiconductor-clad dielectric optical waveguide structures. Appl. Opt. 29, 2769–2780 (1990)CrossRefGoogle Scholar
  49. 49.
    Del Villar, I., Matias, I.R., Arregui, F.J., Achaerandio, M.: Nanodeposition of materials with complex refractive index in long-period fiber gratings. J. Lightwave Technol. 23, 4192–4199 (2005)CrossRefGoogle Scholar
  50. 50.
    Xu, M.Y.C., Alam, M.Z., Zilkie, A.J., Zeaiter, K., Aitchison, J.S.: Surface plasmon polaritons mediated by ITO at near infrared wavelength. In: Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series (2008)Google Scholar
  51. 51.
    Chopra, K.L., Das, S.R.: Thin Film Solar Cells. Thin Film Solar Cells. Plenum, New York (1983)Google Scholar
  52. 52.
    Costellamo, J.E.: Handbook of Display Technology. Academic, New York (1992)Google Scholar
  53. 53.
    Marks, R.S., Novoa, A., Konry, T., Krais, R., Cosnier, S.: Indium tin oxide-coated optical fiber tips for affinity electropolymerization. Materials Science and Engineering C 21, 189–194 (2002)CrossRefGoogle Scholar
  54. 54.
    Patel, N.G., Patel, P.D., Vaishnav, V.S.: Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature. Sensors and Actuators, B: Chemical 96, 180–189 (2003)CrossRefGoogle Scholar
  55. 55.
    Konry, T., Novoa, A., Cosnier, S., Marks, R.S.: Development of an "electroptode" immunosensor: Indium tin oxide-coated optical fiber tips conjugated with an electropolymerized thin film with conjugated cholera toxin B subunit. Anal. Chem. 75, 2633–2639 (2003)CrossRefGoogle Scholar
  56. 56.
    Salama, O., Herrmann, S., Tziknovsky, A., Piura, B., Meirovich, M., Trakht, I., Reed, B., Lobel, L.I., Marks, R.S.: Chemiluminescent optical fiber immunosensor for detection of autoantibodies to ovarian and breast cancer-associated antigens. Biosensors and Bioelectronics 22, 1508–1516 (2007)CrossRefGoogle Scholar
  57. 57.
    Luff, B.J., Wilkinson, J.S., Perrone, G.: Indium tin oxide overlayered waveguides for sensor applications. Appl. Opt. 36, 7066–7072 (1997)CrossRefGoogle Scholar
  58. 58.
    Cooper, P.R.: Refractive-index measurements of liquids used in conjunction with optical fibers. Appl. Opt. 22, 3070–3072 (1983)CrossRefGoogle Scholar
  59. 59.
    Daimon, M., Masumura, A.: Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 46, 3811–3820 (2007)CrossRefGoogle Scholar
  60. 60.
    Lee, B., Roh, S., Park, J.: Current status of micro- and nano-structured optical fiber sensors. Optical Fiber Technology 15, 209–221 (2009)CrossRefGoogle Scholar
  61. 61.
    Zamarreño, C.R., Hernáez, M., Del Villar, I., Matías, I.R., Arregui, F.J.: Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings Sensors and Actuators, B: Chemical. Sensors and Actuators, B: Chemical 155, 290–297 (2011)CrossRefGoogle Scholar
  62. 62.
    Goicoechea, J., Zamarreño, C.R., Matías, I.R., Arregui, F.J.: Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red. Sensors and Actuators, B: Chemical 132, 305–311 (2008)CrossRefGoogle Scholar
  63. 63.
    Itano, K., Choi, J., Rubner, M.F.: Mechanism of the pH-induced discontinuous swelling/deswelling transitions of poly(allylamine hydrochloride)-Containing polyelectrolyte multilayer films. Macromolecules 38, 3450–3460 (2005)CrossRefGoogle Scholar
  64. 64.
    Chen, Z., Lu, C.: Humidity sensors: A review of materials and mechanisms. Sensor Letters 3, 274–295 (2005)CrossRefGoogle Scholar
  65. 65.
    Arregui, F.J., Ciaurriz, Z., Oneca, M., Matias, I.R.: An experimental study about hydrogels for the fabrication of optical fiber humidity sensors. Sensors and Actuators, B: Chemical 96, 165–172 (2003)CrossRefGoogle Scholar
  66. 66.
    Zamarreño, C.R., Hernaez, M., Del Villar, I., Matias, I.R., Arregui, F.J.: Tunable humidity sensor based on ITO-coated optical fiber. Sensors and Actuators, B: Chemical 146, 414–417 (2010)CrossRefGoogle Scholar
  67. 67.
    Hernaez, M., Zamarreño, C.R., Fernandez-Valdivielso, C., Del Villar, I., Arregui, F.J., Matias, I.R.: Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region. Physica Status Solidi (C) Current Topics in Solid State Physics 7, 2767–2769 (2010)Google Scholar
  68. 68.
    Corres, J.M., Matías, I.R., Hernáez, J.M., Bravo, J., Arregui, F.J.: Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles. IEEE Sensors J. 8, 281–285 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Miguel Hernáez
    • 1
  • Carlos R. Zamarreño
    • 1
  • Ignacio Del Villar
    • 1
  • Francisco J. Arregui
    • 1
  • Ignacio R. Matias
    • 1
  1. 1.Public University of NavarrePamplonaSpain

Personalised recommendations